1 /* sha512.c - SHA384 and SHA512 hash functions
2 * Copyright (C) 2003 Free Software Foundation, Inc.
4 * Please see below for more legal information!
6 * This file is part of GnuPG.
8 * GnuPG is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 3 of the License, or
11 * (at your option) any later version.
13 * GnuPG is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 /* Test vectors from FIPS-180-2:
27 * CB00753F 45A35E8B B5A03D69 9AC65007 272C32AB 0EDED163
28 * 1A8B605A 43FF5BED 8086072B A1E7CC23 58BAECA1 34C825A7
30 * DDAF35A1 93617ABA CC417349 AE204131 12E6FA4E 89A97EA2 0A9EEEE6 4B55D39A
31 * 2192992A 274FC1A8 36BA3C23 A3FEEBBD 454D4423 643CE80E 2A9AC94F A54CA49F
33 * "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
35 * 09330C33 F71147E8 3D192FC7 82CD1B47 53111B17 3B3B05D2
36 * 2FA08086 E3B0F712 FCC7C71A 557E2DB9 66C3E9FA 91746039
38 * 8E959B75 DAE313DA 8CF4F728 14FC143F 8F7779C6 EB9F7FA1 7299AEAD B6889018
39 * 501D289E 4900F7E4 331B99DE C4B5433A C7D329EE B6DD2654 5E96E55B 874BE909
43 * 9D0E1809 716474CB 086E834E 310A4A1C ED149E9C 00F24852
44 * 7972CEC5 704C2A5B 07B8B3DC 38ECC4EB AE97DDD8 7F3D8985
46 * E718483D 0CE76964 4E2E42C7 BC15B463 8E1F98B1 3B204428 5632A803 AFA973EB
47 * DE0FF244 877EA60A 4CB0432C E577C31B EB009C5C 2C49AA2E 4EADB217 AD8CC09B
54 #include "algorithms.h"
58 u64 h0,h1,h2,h3,h4,h5,h6,h7;
65 burn_stack (int bytes)
69 wipememory(buf,sizeof buf);
77 sha512_init( SHA512_CONTEXT *hd )
79 hd->h0 = U64_C(0x6a09e667f3bcc908);
80 hd->h1 = U64_C(0xbb67ae8584caa73b);
81 hd->h2 = U64_C(0x3c6ef372fe94f82b);
82 hd->h3 = U64_C(0xa54ff53a5f1d36f1);
83 hd->h4 = U64_C(0x510e527fade682d1);
84 hd->h5 = U64_C(0x9b05688c2b3e6c1f);
85 hd->h6 = U64_C(0x1f83d9abfb41bd6b);
86 hd->h7 = U64_C(0x5be0cd19137e2179);
93 sha384_init( SHA512_CONTEXT *hd )
95 hd->h0 = U64_C(0xcbbb9d5dc1059ed8);
96 hd->h1 = U64_C(0x629a292a367cd507);
97 hd->h2 = U64_C(0x9159015a3070dd17);
98 hd->h3 = U64_C(0x152fecd8f70e5939);
99 hd->h4 = U64_C(0x67332667ffc00b31);
100 hd->h5 = U64_C(0x8eb44a8768581511);
101 hd->h6 = U64_C(0xdb0c2e0d64f98fa7);
102 hd->h7 = U64_C(0x47b5481dbefa4fa4);
110 * Transform the message W which consists of 16 64-bit-words
113 transform( SHA512_CONTEXT *hd, byte *data )
118 static const u64 k[]=
120 U64_C(0x428a2f98d728ae22), U64_C(0x7137449123ef65cd),
121 U64_C(0xb5c0fbcfec4d3b2f), U64_C(0xe9b5dba58189dbbc),
122 U64_C(0x3956c25bf348b538), U64_C(0x59f111f1b605d019),
123 U64_C(0x923f82a4af194f9b), U64_C(0xab1c5ed5da6d8118),
124 U64_C(0xd807aa98a3030242), U64_C(0x12835b0145706fbe),
125 U64_C(0x243185be4ee4b28c), U64_C(0x550c7dc3d5ffb4e2),
126 U64_C(0x72be5d74f27b896f), U64_C(0x80deb1fe3b1696b1),
127 U64_C(0x9bdc06a725c71235), U64_C(0xc19bf174cf692694),
128 U64_C(0xe49b69c19ef14ad2), U64_C(0xefbe4786384f25e3),
129 U64_C(0x0fc19dc68b8cd5b5), U64_C(0x240ca1cc77ac9c65),
130 U64_C(0x2de92c6f592b0275), U64_C(0x4a7484aa6ea6e483),
131 U64_C(0x5cb0a9dcbd41fbd4), U64_C(0x76f988da831153b5),
132 U64_C(0x983e5152ee66dfab), U64_C(0xa831c66d2db43210),
133 U64_C(0xb00327c898fb213f), U64_C(0xbf597fc7beef0ee4),
134 U64_C(0xc6e00bf33da88fc2), U64_C(0xd5a79147930aa725),
135 U64_C(0x06ca6351e003826f), U64_C(0x142929670a0e6e70),
136 U64_C(0x27b70a8546d22ffc), U64_C(0x2e1b21385c26c926),
137 U64_C(0x4d2c6dfc5ac42aed), U64_C(0x53380d139d95b3df),
138 U64_C(0x650a73548baf63de), U64_C(0x766a0abb3c77b2a8),
139 U64_C(0x81c2c92e47edaee6), U64_C(0x92722c851482353b),
140 U64_C(0xa2bfe8a14cf10364), U64_C(0xa81a664bbc423001),
141 U64_C(0xc24b8b70d0f89791), U64_C(0xc76c51a30654be30),
142 U64_C(0xd192e819d6ef5218), U64_C(0xd69906245565a910),
143 U64_C(0xf40e35855771202a), U64_C(0x106aa07032bbd1b8),
144 U64_C(0x19a4c116b8d2d0c8), U64_C(0x1e376c085141ab53),
145 U64_C(0x2748774cdf8eeb99), U64_C(0x34b0bcb5e19b48a8),
146 U64_C(0x391c0cb3c5c95a63), U64_C(0x4ed8aa4ae3418acb),
147 U64_C(0x5b9cca4f7763e373), U64_C(0x682e6ff3d6b2b8a3),
148 U64_C(0x748f82ee5defb2fc), U64_C(0x78a5636f43172f60),
149 U64_C(0x84c87814a1f0ab72), U64_C(0x8cc702081a6439ec),
150 U64_C(0x90befffa23631e28), U64_C(0xa4506cebde82bde9),
151 U64_C(0xbef9a3f7b2c67915), U64_C(0xc67178f2e372532b),
152 U64_C(0xca273eceea26619c), U64_C(0xd186b8c721c0c207),
153 U64_C(0xeada7dd6cde0eb1e), U64_C(0xf57d4f7fee6ed178),
154 U64_C(0x06f067aa72176fba), U64_C(0x0a637dc5a2c898a6),
155 U64_C(0x113f9804bef90dae), U64_C(0x1b710b35131c471b),
156 U64_C(0x28db77f523047d84), U64_C(0x32caab7b40c72493),
157 U64_C(0x3c9ebe0a15c9bebc), U64_C(0x431d67c49c100d4c),
158 U64_C(0x4cc5d4becb3e42b6), U64_C(0x597f299cfc657e2a),
159 U64_C(0x5fcb6fab3ad6faec), U64_C(0x6c44198c4a475817)
162 /* get values from the chaining vars */
172 #ifdef BIG_ENDIAN_HOST
173 memcpy( w, data, 128 );
179 for(i=0, p2=(byte*)w; i < 16; i++, p2 += 8 )
193 #define ROTR(x,n) (((x)>>(n)) | ((x)<<(64-(n))))
194 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
195 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
196 #define Sum0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
197 #define Sum1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
198 #define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
199 #define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
202 w[t] = S1(w[t-2]) + w[t-7] + S0(w[t-15]) + w[t-16];
208 t1=h+Sum1(e)+Ch(e,f,g)+k[t]+w[t];
209 t2=Sum0(a)+Maj(a,b,c);
219 /* printf("t=%d a=%016llX b=%016llX c=%016llX d=%016llX e=%016llX f=%016llX g=%016llX h=%016llX\n",t,a,b,c,d,e,f,g,h); */
222 /* update chaining vars */
234 /* Update the message digest with the contents
235 * of INBUF with length INLEN.
238 sha512_write( SHA512_CONTEXT *hd, byte *inbuf, size_t inlen)
240 if( hd->count == 128 ) { /* flush the buffer */
241 transform( hd, hd->buf );
249 for( ; inlen && hd->count < 128; inlen-- )
250 hd->buf[hd->count++] = *inbuf++;
251 sha512_write( hd, NULL, 0 );
256 while( inlen >= 128 ) {
257 transform( hd, inbuf );
264 for( ; inlen && hd->count < 128; inlen-- )
265 hd->buf[hd->count++] = *inbuf++;
269 /* The routine final terminates the computation and
270 * returns the digest.
271 * The handle is prepared for a new cycle, but adding bytes to the
272 * handle will the destroy the returned buffer.
273 * Returns: 64 bytes representing the digest. When used for sha384,
274 * we take the leftmost 48 of those bytes.
278 sha512_final(SHA512_CONTEXT *hd)
283 sha512_write(hd, NULL, 0); /* flush */;
286 /* multiply by 128 to make a byte count */
291 if( (lsb += hd->count) < t )
293 /* multiply by 8 to make a bit count */
299 if( hd->count < 112 ) { /* enough room */
300 hd->buf[hd->count++] = 0x80; /* pad */
301 while( hd->count < 112 )
302 hd->buf[hd->count++] = 0; /* pad */
304 else { /* need one extra block */
305 hd->buf[hd->count++] = 0x80; /* pad character */
306 while( hd->count < 128 )
307 hd->buf[hd->count++] = 0;
308 sha512_write(hd, NULL, 0); /* flush */;
309 memset(hd->buf, 0, 112 ); /* fill next block with zeroes */
311 /* append the 128 bit count */
312 hd->buf[112] = msb >> 56;
313 hd->buf[113] = msb >> 48;
314 hd->buf[114] = msb >> 40;
315 hd->buf[115] = msb >> 32;
316 hd->buf[116] = msb >> 24;
317 hd->buf[117] = msb >> 16;
318 hd->buf[118] = msb >> 8;
321 hd->buf[120] = lsb >> 56;
322 hd->buf[121] = lsb >> 48;
323 hd->buf[122] = lsb >> 40;
324 hd->buf[123] = lsb >> 32;
325 hd->buf[124] = lsb >> 24;
326 hd->buf[125] = lsb >> 16;
327 hd->buf[126] = lsb >> 8;
329 transform( hd, hd->buf );
333 #ifdef BIG_ENDIAN_HOST
334 #define X(a) do { *(u64*)p = hd->h##a ; p += 8; } while(0)
335 #else /* little endian */
336 #define X(a) do { *p++ = hd->h##a >> 56; *p++ = hd->h##a >> 48; \
337 *p++ = hd->h##a >> 40; *p++ = hd->h##a >> 32; \
338 *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \
339 *p++ = hd->h##a >> 8; *p++ = hd->h##a; } while(0)
347 /* Note that these last two chunks are included even for SHA384.
348 We just ignore them. */
355 sha512_read( SHA512_CONTEXT *hd )
361 * Return some information about the algorithm. We need algo here to
362 * distinguish different flavors of the algorithm.
363 * Returns: A pointer to string describing the algorithm or NULL if
364 * the ALGO is invalid.
367 sha512_get_info( int algo, size_t *contextsize,
368 byte **r_asnoid, int *r_asnlen, int *r_mdlen,
369 void (**r_init)( void *c ),
370 void (**r_write)( void *c, byte *buf, size_t nbytes ),
371 void (**r_final)( void *c ),
372 byte *(**r_read)( void *c )
375 static byte asn[] = /* Object ID is 2.16.840.1.101.3.4.2.3 */
377 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
378 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
385 *contextsize = sizeof(SHA512_CONTEXT);
387 *r_asnlen = DIM(asn);
389 *(void (**)(SHA512_CONTEXT *))r_init = sha512_init;
390 *(void (**)(SHA512_CONTEXT *, byte*, size_t))r_write = sha512_write;
391 *(void (**)(SHA512_CONTEXT *))r_final = sha512_final;
392 *(byte *(**)(SHA512_CONTEXT *))r_read = sha512_read;
397 /* SHA384 is really a truncated SHA512 with a different
400 sha384_get_info( int algo, size_t *contextsize,
401 byte **r_asnoid, int *r_asnlen, int *r_mdlen,
402 void (**r_init)( void *c ),
403 void (**r_write)( void *c, byte *buf, size_t nbytes ),
404 void (**r_final)( void *c ),
405 byte *(**r_read)( void *c )
408 static byte asn[] = /* Object ID is 2.16.840.1.101.3.4.2.2 */
410 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
411 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
418 *contextsize = sizeof(SHA512_CONTEXT);
420 *r_asnlen = DIM(asn);
422 *(void (**)(SHA512_CONTEXT *))r_init = sha384_init;
423 *(void (**)(SHA512_CONTEXT *, byte*, size_t))r_write = sha512_write;
424 *(void (**)(SHA512_CONTEXT *))r_final = sha512_final;
425 *(byte *(**)(SHA512_CONTEXT *))r_read = sha512_read;