Merge branch 'master' into LIBGCRYPT-1-7-BRANCH
[libgcrypt.git] / mpi / mpi-inv.c
index 28cde00..ee6813b 100644 (file)
@@ -1,40 +1,39 @@
 /* mpi-inv.c  -  MPI functions
- *     Copyright (c) 1997 by Werner Koch (dd9jn)
+ *     Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
  *
- * This file is part of G10.
+ * This file is part of Libgcrypt.
  *
- * G10 is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
  *
- * G10 is distributed in the hope that it will be useful,
+ * Libgcrypt is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
- * GNU General Public License for more details.
+ * GNU Lesser General Public License for more details.
  *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
  */
 
 #include <config.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include "mpi-internal.h"
-
+#include "g10lib.h"
 
 /****************
  * Calculate the multiplicative inverse X of A mod N
  * That is: Find the solution x for
  *             1 = (a*x) mod n
  */
-void
-mpi_invm( MPI x, MPI a, MPI n )
+int
+_gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t n)
 {
-  #if 0
-    MPI u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3;
-    MPI ta, tb, tc;
+#if 0
+    gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, q, t1, t2, t3;
+    gcry_mpi_t ta, tb, tc;
 
     u = mpi_copy(a);
     v = mpi_copy(n);
@@ -44,10 +43,10 @@ mpi_invm( MPI x, MPI a, MPI n )
     v1 = mpi_alloc_set_ui(0);
     v2 = mpi_alloc_set_ui(1);
     v3 = mpi_copy(v);
-    q  = mpi_alloc( mpi_get_nlimbs(u) );
-    t1 = mpi_alloc( mpi_get_nlimbs(u) );
-    t2 = mpi_alloc( mpi_get_nlimbs(u) );
-    t3 = mpi_alloc( mpi_get_nlimbs(u) );
+    q  = mpi_alloc( mpi_get_nlimbs(u)+1 );
+    t1 = mpi_alloc( mpi_get_nlimbs(u)+1 );
+    t2 = mpi_alloc( mpi_get_nlimbs(u)+1 );
+    t3 = mpi_alloc( mpi_get_nlimbs(u)+1 );
     while( mpi_cmp_ui( v3, 0 ) ) {
        mpi_fdiv_q( q, u3, v3 );
        mpi_mul(t1, v1, q); mpi_mul(t2, v2, q); mpi_mul(t3, v3, q);
@@ -76,12 +75,12 @@ mpi_invm( MPI x, MPI a, MPI n )
     mpi_free(t3);
     mpi_free(u);
     mpi_free(v);
-  #else
-    /* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
-     * modified according to Michael Penk's solution for Exercice 35 */
+#elif 0
+    /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
+     * modified according to Michael Penk's solution for Exercise 35 */
 
     /* FIXME: we can simplify this in most cases (see Knuth) */
-    MPI u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3;
+    gcry_mpi_t u, v, u1, u2, u3, v1, v2, v3, t1, t2, t3;
     unsigned k;
     int sign;
 
@@ -120,6 +119,7 @@ mpi_invm( MPI x, MPI a, MPI n )
            mpi_rshift(t2, t2, 1);
            mpi_rshift(t3, t3, 1);
          Y4:
+           ;
        } while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
 
        if( !t3->sign ) {
@@ -156,8 +156,117 @@ mpi_invm( MPI x, MPI a, MPI n )
     mpi_free(t1);
     mpi_free(t2);
     mpi_free(t3);
-  #endif
-}
+#else
+    /* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
+     * modified according to Michael Penk's solution for Exercise 35
+     * with further enhancement */
+    gcry_mpi_t u, v, u1, u2=NULL, u3, v1, v2=NULL, v3, t1, t2=NULL, t3;
+    unsigned k;
+    int sign;
+    int odd ;
 
+    if (!mpi_cmp_ui (a, 0))
+        return 0; /* Inverse does not exists.  */
+    if (!mpi_cmp_ui (n, 1))
+        return 0; /* Inverse does not exists.  */
 
+    u = mpi_copy(a);
+    v = mpi_copy(n);
 
+    for(k=0; !mpi_test_bit(u,0) && !mpi_test_bit(v,0); k++ ) {
+       mpi_rshift(u, u, 1);
+       mpi_rshift(v, v, 1);
+    }
+    odd = mpi_test_bit(v,0);
+
+    u1 = mpi_alloc_set_ui(1);
+    if( !odd )
+       u2 = mpi_alloc_set_ui(0);
+    u3 = mpi_copy(u);
+    v1 = mpi_copy(v);
+    if( !odd ) {
+       v2 = mpi_alloc( mpi_get_nlimbs(u) );
+       mpi_sub( v2, u1, u ); /* U is used as const 1 */
+    }
+    v3 = mpi_copy(v);
+    if( mpi_test_bit(u, 0) ) { /* u is odd */
+       t1 = mpi_alloc_set_ui(0);
+       if( !odd ) {
+           t2 = mpi_alloc_set_ui(1); t2->sign = 1;
+       }
+       t3 = mpi_copy(v); t3->sign = !t3->sign;
+       goto Y4;
+    }
+    else {
+       t1 = mpi_alloc_set_ui(1);
+       if( !odd )
+           t2 = mpi_alloc_set_ui(0);
+       t3 = mpi_copy(u);
+    }
+    do {
+       do {
+           if( !odd ) {
+               if( mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0) ) { /* one is odd */
+                   mpi_add(t1, t1, v);
+                   mpi_sub(t2, t2, u);
+               }
+               mpi_rshift(t1, t1, 1);
+               mpi_rshift(t2, t2, 1);
+               mpi_rshift(t3, t3, 1);
+           }
+           else {
+               if( mpi_test_bit(t1, 0) )
+                   mpi_add(t1, t1, v);
+               mpi_rshift(t1, t1, 1);
+               mpi_rshift(t3, t3, 1);
+           }
+         Y4:
+           ;
+       } while( !mpi_test_bit( t3, 0 ) ); /* while t3 is even */
+
+       if( !t3->sign ) {
+           mpi_set(u1, t1);
+           if( !odd )
+               mpi_set(u2, t2);
+           mpi_set(u3, t3);
+       }
+       else {
+           mpi_sub(v1, v, t1);
+           sign = u->sign; u->sign = !u->sign;
+           if( !odd )
+               mpi_sub(v2, u, t2);
+           u->sign = sign;
+           sign = t3->sign; t3->sign = !t3->sign;
+           mpi_set(v3, t3);
+           t3->sign = sign;
+       }
+       mpi_sub(t1, u1, v1);
+       if( !odd )
+           mpi_sub(t2, u2, v2);
+       mpi_sub(t3, u3, v3);
+       if( t1->sign ) {
+           mpi_add(t1, t1, v);
+           if( !odd )
+               mpi_sub(t2, t2, u);
+       }
+    } while( mpi_cmp_ui( t3, 0 ) ); /* while t3 != 0 */
+    /* mpi_lshift( u3, k ); */
+    mpi_set(x, u1);
+
+    mpi_free(u1);
+    mpi_free(v1);
+    mpi_free(t1);
+    if( !odd ) {
+       mpi_free(u2);
+       mpi_free(v2);
+       mpi_free(t2);
+    }
+    mpi_free(u3);
+    mpi_free(v3);
+    mpi_free(t3);
+
+    mpi_free(u);
+    mpi_free(v);
+#endif
+    return 1;
+}