Updated FSF street address and preparations for a release candidate.
[gnupg.git] / cipher / elgamal.c
1 /* elgamal.c  -  elgamal Public Key encryption
2  * Copyright (C) 1998, 2000, 2001, 2003,
3  *               2004 Free Software Foundation, Inc.
4  *
5  * For a description of the algorithm, see:
6  *   Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
7  *   ISBN 0-471-11709-9. Pages 476 ff.
8  *
9  * This file is part of GnuPG.
10  *
11  * GnuPG is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * GnuPG is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
24  * USA.
25  */
26
27 #include <config.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include "util.h"
32 #include "mpi.h"
33 #include "cipher.h"
34 #include "elgamal.h"
35
36 typedef struct {
37     MPI p;          /* prime */
38     MPI g;          /* group generator */
39     MPI y;          /* g^x mod p */
40 } ELG_public_key;
41
42
43 typedef struct {
44     MPI p;          /* prime */
45     MPI g;          /* group generator */
46     MPI y;          /* g^x mod p */
47     MPI x;          /* secret exponent */
48 } ELG_secret_key;
49
50
51 static void test_keys( ELG_secret_key *sk, unsigned nbits );
52 static MPI gen_k( MPI p, int small_k );
53 static void generate( ELG_secret_key *sk, unsigned nbits, MPI **factors );
54 static int  check_secret_key( ELG_secret_key *sk );
55 static void do_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey );
56 static void decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey );
57
58
59 static void (*progress_cb) ( void *, int );
60 static void *progress_cb_data;
61
62 void
63 register_pk_elg_progress ( void (*cb)( void *, int), void *cb_data )
64 {
65     progress_cb = cb;
66     progress_cb_data = cb_data;
67 }
68
69
70 static void
71 progress( int c )
72 {
73     if ( progress_cb )
74         progress_cb ( progress_cb_data, c );
75     else
76         fputc( c, stderr );
77 }
78
79
80 /****************
81  * Michael Wiener's table about subgroup sizes to match field sizes
82  * (floating around somewhere - Fixme: need a reference)
83  */
84 static unsigned int
85 wiener_map( unsigned int n )
86 {
87     static struct { unsigned int p_n, q_n; } t[] =
88     {   /*   p    q      attack cost */
89         {  512, 119 },  /* 9 x 10^17 */
90         {  768, 145 },  /* 6 x 10^21 */
91         { 1024, 165 },  /* 7 x 10^24 */
92         { 1280, 183 },  /* 3 x 10^27 */
93         { 1536, 198 },  /* 7 x 10^29 */
94         { 1792, 212 },  /* 9 x 10^31 */
95         { 2048, 225 },  /* 8 x 10^33 */
96         { 2304, 237 },  /* 5 x 10^35 */
97         { 2560, 249 },  /* 3 x 10^37 */
98         { 2816, 259 },  /* 1 x 10^39 */
99         { 3072, 269 },  /* 3 x 10^40 */
100         { 3328, 279 },  /* 8 x 10^41 */
101         { 3584, 288 },  /* 2 x 10^43 */
102         { 3840, 296 },  /* 4 x 10^44 */
103         { 4096, 305 },  /* 7 x 10^45 */
104         { 4352, 313 },  /* 1 x 10^47 */
105         { 4608, 320 },  /* 2 x 10^48 */
106         { 4864, 328 },  /* 2 x 10^49 */
107         { 5120, 335 },  /* 3 x 10^50 */
108         { 0, 0 }
109     };
110     int i;
111
112     for(i=0; t[i].p_n; i++ )  {
113         if( n <= t[i].p_n )
114             return t[i].q_n;
115     }
116     /* not in table - use some arbitrary high number ;-) */
117     return  n / 8 + 200;
118 }
119
120 static void
121 test_keys( ELG_secret_key *sk, unsigned nbits )
122 {
123     ELG_public_key pk;
124     MPI test = mpi_alloc( 0 );
125     MPI out1_a = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
126     MPI out1_b = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
127     MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
128
129     pk.p = sk->p;
130     pk.g = sk->g;
131     pk.y = sk->y;
132
133     /*mpi_set_bytes( test, nbits, get_random_byte, 0 );*/
134     {   char *p = get_random_bits( nbits, 0, 0 );
135         mpi_set_buffer( test, p, (nbits+7)/8, 0 );
136         m_free(p);
137     }
138
139     do_encrypt( out1_a, out1_b, test, &pk );
140     decrypt( out2, out1_a, out1_b, sk );
141     if( mpi_cmp( test, out2 ) )
142         log_fatal("Elgamal operation: encrypt, decrypt failed\n");
143
144     mpi_free( test );
145     mpi_free( out1_a );
146     mpi_free( out1_b );
147     mpi_free( out2 );
148 }
149
150
151 /****************
152  * Generate a random secret exponent k from prime p, so that k is
153  * relatively prime to p-1.  With SMALL_K set, k will be selected for
154  * better encryption performance - this must never bee used signing!
155  */
156 static MPI
157 gen_k( MPI p, int small_k )
158 {
159     MPI k = mpi_alloc_secure( 0 );
160     MPI temp = mpi_alloc( mpi_get_nlimbs(p) );
161     MPI p_1 = mpi_copy(p);
162     unsigned int orig_nbits = mpi_get_nbits(p);
163     unsigned int nbits;
164     unsigned int nbytes;
165     char *rndbuf = NULL;
166
167     if (small_k)
168       {
169         /* Using a k much lesser than p is sufficient for encryption and
170          * it greatly improves the encryption performance.  We use
171          * Wiener's table and add a large safety margin.
172          */
173         nbits = wiener_map( orig_nbits ) * 3 / 2;
174         if( nbits >= orig_nbits )
175           BUG();
176       }
177     else
178       nbits = orig_nbits;
179
180     nbytes = (nbits+7)/8;
181     if( DBG_CIPHER )
182         log_debug("choosing a random k of %u bits", nbits);
183     mpi_sub_ui( p_1, p, 1);
184     for(;;) {
185         if( !rndbuf || nbits < 32 ) {
186             m_free(rndbuf);
187             rndbuf = get_random_bits( nbits, 1, 1 );
188         }
189         else { /* Change only some of the higher bits. */
190             /* We could impprove this by directly requesting more memory
191              * at the first call to get_random_bits() and use this the here
192              * maybe it is easier to do this directly in random.c
193              * Anyway, it is highly inlikely that we will ever reach this code
194              */
195             char *pp = get_random_bits( 32, 1, 1 );
196             memcpy( rndbuf,pp, 4 );
197             m_free(pp);
198         }
199         mpi_set_buffer( k, rndbuf, nbytes, 0 );
200
201         for(;;) {
202             if( !(mpi_cmp( k, p_1 ) < 0) ) {  /* check: k < (p-1) */
203                 if( DBG_CIPHER )
204                     progress('+');
205                 break; /* no  */
206             }
207             if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */
208                 if( DBG_CIPHER )
209                     progress('-');
210                 break; /* no */
211             }
212             if( mpi_gcd( temp, k, p_1 ) )
213                 goto found;  /* okay, k is relatively prime to (p-1) */
214             mpi_add_ui( k, k, 1 );
215             if( DBG_CIPHER )
216                 progress('.');
217         }
218     }
219   found:
220     m_free(rndbuf);
221     if( DBG_CIPHER )
222         progress('\n');
223     mpi_free(p_1);
224     mpi_free(temp);
225
226     return k;
227 }
228
229 /****************
230  * Generate a key pair with a key of size NBITS
231  * Returns: 2 structures filles with all needed values
232  *          and an array with n-1 factors of (p-1)
233  */
234 static void
235 generate(  ELG_secret_key *sk, unsigned int nbits, MPI **ret_factors )
236 {
237     MPI p;    /* the prime */
238     MPI p_min1;
239     MPI g;
240     MPI x;    /* the secret exponent */
241     MPI y;
242     MPI temp;
243     unsigned int qbits;
244     unsigned int xbits;
245     byte *rndbuf;
246
247     p_min1 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
248     temp   = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
249     qbits = wiener_map( nbits );
250     if( qbits & 1 ) /* better have a even one */
251         qbits++;
252     g = mpi_alloc(1);
253     p = generate_elg_prime( 0, nbits, qbits, g, ret_factors );
254     mpi_sub_ui(p_min1, p, 1);
255
256
257     /* select a random number which has these properties:
258      *   0 < x < p-1
259      * This must be a very good random number because this is the
260      * secret part.  The prime is public and may be shared anyway,
261      * so a random generator level of 1 is used for the prime.
262      *
263      * I don't see a reason to have a x of about the same size as the
264      * p.  It should be sufficient to have one about the size of q or
265      * the later used k plus a large safety margin. Decryption will be
266      * much faster with such an x.  Note that this is not optimal for
267      * signing keys becuase it makes an attack using accidential small
268      * K values even easier.  Well, one should not use ElGamal signing
269      * anyway.
270      */
271     xbits = qbits * 3 / 2;
272     if( xbits >= nbits )
273         BUG();
274     x = mpi_alloc_secure( xbits/BITS_PER_MPI_LIMB );
275     if( DBG_CIPHER )
276         log_debug("choosing a random x of size %u", xbits );
277     rndbuf = NULL;
278     do {
279         if( DBG_CIPHER )
280             progress('.');
281         if( rndbuf ) { /* change only some of the higher bits */
282             if( xbits < 16 ) {/* should never happen ... */
283                 m_free(rndbuf);
284                 rndbuf = get_random_bits( xbits, 2, 1 );
285             }
286             else {
287                 char *r = get_random_bits( 16, 2, 1 );
288                 memcpy(rndbuf, r, 16/8 );
289                 m_free(r);
290             }
291         }
292         else
293             rndbuf = get_random_bits( xbits, 2, 1 );
294         mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
295         mpi_clear_highbit( x, xbits+1 );
296     } while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
297     m_free(rndbuf);
298
299     y = mpi_alloc(nbits/BITS_PER_MPI_LIMB);
300     mpi_powm( y, g, x, p );
301
302     if( DBG_CIPHER ) {
303         progress('\n');
304         log_mpidump("elg  p= ", p );
305         log_mpidump("elg  g= ", g );
306         log_mpidump("elg  y= ", y );
307         log_mpidump("elg  x= ", x );
308     }
309
310     /* copy the stuff to the key structures */
311     sk->p = p;
312     sk->g = g;
313     sk->y = y;
314     sk->x = x;
315
316     /* now we can test our keys (this should never fail!) */
317     test_keys( sk, nbits - 64 );
318
319     mpi_free( p_min1 );
320     mpi_free( temp   );
321 }
322
323
324 /****************
325  * Test whether the secret key is valid.
326  * Returns: if this is a valid key.
327  */
328 static int
329 check_secret_key( ELG_secret_key *sk )
330 {
331     int rc;
332     MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );
333
334     mpi_powm( y, sk->g, sk->x, sk->p );
335     rc = !mpi_cmp( y, sk->y );
336     mpi_free( y );
337     return rc;
338 }
339
340
341 static void
342 do_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
343 {
344     MPI k;
345
346     /* Note: maybe we should change the interface, so that it
347      * is possible to check that input is < p and return an
348      * error code.
349      */
350
351     k = gen_k( pkey->p, 1 );
352     mpi_powm( a, pkey->g, k, pkey->p );
353     /* b = (y^k * input) mod p
354      *   = ((y^k mod p) * (input mod p)) mod p
355      * and because input is < p
356      *   = ((y^k mod p) * input) mod p
357      */
358     mpi_powm( b, pkey->y, k, pkey->p );
359     mpi_mulm( b, b, input, pkey->p );
360 #if 0
361     if( DBG_CIPHER ) {
362         log_mpidump("elg encrypted y= ", pkey->y);
363         log_mpidump("elg encrypted p= ", pkey->p);
364         log_mpidump("elg encrypted k= ", k);
365         log_mpidump("elg encrypted M= ", input);
366         log_mpidump("elg encrypted a= ", a);
367         log_mpidump("elg encrypted b= ", b);
368     }
369 #endif
370     mpi_free(k);
371 }
372
373
374 static void
375 decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
376 {
377     MPI t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
378
379     /* output = b/(a^x) mod p */
380     mpi_powm( t1, a, skey->x, skey->p );
381     mpi_invm( t1, t1, skey->p );
382     mpi_mulm( output, b, t1, skey->p );
383 #if 0
384     if( DBG_CIPHER ) {
385         log_mpidump("elg decrypted x= ", skey->x);
386         log_mpidump("elg decrypted p= ", skey->p);
387         log_mpidump("elg decrypted a= ", a);
388         log_mpidump("elg decrypted b= ", b);
389         log_mpidump("elg decrypted M= ", output);
390     }
391 #endif
392     mpi_free(t1);
393 }
394
395
396 /*********************************************
397  **************  interface  ******************
398  *********************************************/
399
400 int
401 elg_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
402 {
403     ELG_secret_key sk;
404
405     if( !is_ELGAMAL(algo) )
406         return G10ERR_PUBKEY_ALGO;
407
408     generate( &sk, nbits, retfactors );
409     skey[0] = sk.p;
410     skey[1] = sk.g;
411     skey[2] = sk.y;
412     skey[3] = sk.x;
413     return 0;
414 }
415
416
417 int
418 elg_check_secret_key( int algo, MPI *skey )
419 {
420     ELG_secret_key sk;
421
422     if( !is_ELGAMAL(algo) )
423         return G10ERR_PUBKEY_ALGO;
424     if( !skey[0] || !skey[1] || !skey[2] || !skey[3] )
425         return G10ERR_BAD_MPI;
426
427     sk.p = skey[0];
428     sk.g = skey[1];
429     sk.y = skey[2];
430     sk.x = skey[3];
431     if( !check_secret_key( &sk ) )
432         return G10ERR_BAD_SECKEY;
433
434     return 0;
435 }
436
437
438 int
439 elg_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
440 {
441     ELG_public_key pk;
442
443     if( !is_ELGAMAL(algo) )
444         return G10ERR_PUBKEY_ALGO;
445     if( !data || !pkey[0] || !pkey[1] || !pkey[2] )
446         return G10ERR_BAD_MPI;
447
448     pk.p = pkey[0];
449     pk.g = pkey[1];
450     pk.y = pkey[2];
451     resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
452     resarr[1] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
453     do_encrypt( resarr[0], resarr[1], data, &pk );
454     return 0;
455 }
456
457 int
458 elg_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
459 {
460     ELG_secret_key sk;
461
462     if( !is_ELGAMAL(algo) )
463         return G10ERR_PUBKEY_ALGO;
464     if( !data[0] || !data[1]
465         || !skey[0] || !skey[1] || !skey[2] || !skey[3] )
466         return G10ERR_BAD_MPI;
467
468     sk.p = skey[0];
469     sk.g = skey[1];
470     sk.y = skey[2];
471     sk.x = skey[3];
472     *result = mpi_alloc_secure( mpi_get_nlimbs( sk.p ) );
473     decrypt( *result, data[0], data[1], &sk );
474     return 0;
475 }
476
477
478 unsigned int
479 elg_get_nbits( int algo, MPI *pkey )
480 {
481     if( !is_ELGAMAL(algo) )
482         return 0;
483     return mpi_get_nbits( pkey[0] );
484 }
485
486
487 /****************
488  * Return some information about the algorithm.  We need algo here to
489  * distinguish different flavors of the algorithm.
490  * Returns: A pointer to string describing the algorithm or NULL if
491  *          the ALGO is invalid.
492  * Usage: Bit 0 set : allows signing
493  *            1 set : allows encryption
494  */
495 const char *
496 elg_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig,
497                                                          int *use )
498 {
499     *npkey = 3;
500     *nskey = 4;
501     *nenc = 2;
502     *nsig = 2;
503
504     switch( algo ) {
505       case PUBKEY_ALGO_ELGAMAL_E:
506         *use = PUBKEY_USAGE_ENC;
507         return "ELG-E";
508       default: *use = 0; return NULL;
509     }
510 }