Removed the module registration interface
[libgcrypt.git] / doc / gcrypt.texi
index 55fae68..14f6fd1 100644 (file)
@@ -12,14 +12,14 @@ This manual is for Libgcrypt
 (version @value{VERSION}, @value{UPDATED}),
 which is GNU's library of cryptographic building blocks.
 
-Copyright @copyright{} 2000, 2002, 2003, 2004, 2006, 2007, 2008 Free Software Foundation, Inc.
+Copyright @copyright{} 2000, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2011 Free Software Foundation, Inc.
 
 @quotation
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU General Public License as published by the
 Free Software Foundation; either version 2 of the License, or (at your
 option) any later version. The text of the license can be found in the
-section entitled ``Copying''.
+section entitled ``GNU General Public License''.
 @end quotation
 @end copying
 
@@ -28,6 +28,23 @@ section entitled ``Copying''.
 * libgcrypt: (gcrypt).  Cryptographic function library.
 @end direntry
 
+@c A couple of macros with no effect on texinfo
+@c but used by the yat2m processor.
+@macro manpage {a}
+@end macro
+@macro mansect {a}
+@end macro
+@macro manpause
+@end macro
+@macro mancont
+@end macro
+
+@c
+@c Printing stuff taken from gcc.
+@c
+@macro gnupgtabopt{body}
+@code{\body\}
+@end macro
 
 
 @c
@@ -68,17 +85,19 @@ section entitled ``Copying''.
 * Symmetric cryptography::       How to use symmetric cryptography.
 * Public Key cryptography::      How to use public key cryptography.
 * Hashing::                      How to use hash and MAC algorithms.
+* Key Derivation::               How to derive keys from strings
 * Random Numbers::               How to work with random numbers.
 * S-expressions::                How to manage S-expressions.
 * MPI library::                  How to work with multi-precision-integers.
 * Prime numbers::                How to use the Prime number related functions.
 * Utilities::                    Utility functions.
+* Tools::                        Utility tools
 * Architecture::                 How Libgcrypt works internally.
 
 Appendices
 
-* FIPS Restrictions::           Restrictions in FIPS mode.
-* FIPS Finite State Machine::   Description of the FIPS FSM.
+* Self-Tests::                  Description of the self-tests.
+* FIPS Mode::                   Description of the FIPS mode.
 * Library Copying::             The GNU Lesser General Public License
                                 says how you can copy and share Libgcrypt.
 * Copying::                     The GNU General Public License says how you
@@ -187,7 +206,7 @@ of the library are verified.
 * Building sources using Automake::  How to build sources with the help of Automake.
 * Initializing the library::    How to initialize the library.
 * Multi-Threading::             How Libgcrypt can be used in a MT environment.
-* FIPS mode::                   How to enable the FIPS mode.
+* Enabling FIPS mode::          How to enable the FIPS mode.
 @end menu
 
 
@@ -219,7 +238,7 @@ Certain parts of gcrypt.h may be excluded by defining these macros:
 Do not define the shorthand macros @code{mpi_*} for @code{gcry_mpi_*}.
 
 @item GCRYPT_NO_DEPRECATED
-Do not include defintions for deprecated features.  This is useful to
+Do not include definitions for deprecated features.  This is useful to
 make sure that no deprecated features are used.
 @end table
 
@@ -316,7 +335,7 @@ but due to problem with the dynamic linker an old version may actually
 be used.  So you may want to check that the version is okay right
 after program startup.
 
-@deftypefun const char *gcry_check_version (const char *@var{req_version})
+@deftypefun {const char *} gcry_check_version (const char *@var{req_version})
 
 The function @code{gcry_check_version} initializes some subsystems used
 by Libgcrypt and must be invoked before any other function in the
@@ -332,7 +351,7 @@ pointer.
 
 Libgcrypt uses a concept known as secure memory, which is a region of
 memory set aside for storing sensitive data.  Because such memory is a
-scare resource, it needs to be setup in advanced to a fixed size.
+scarce resource, it needs to be setup in advanced to a fixed size.
 Further, most operating systems have special requirements on how that
 secure memory can be used.  For example, it might be required to install
 an application as ``setuid(root)'' to allow allocating such memory.
@@ -352,7 +371,7 @@ memory is not a problem, you should initialize Libgcrypt this way:
       fputs ("libgcrypt version mismatch\n", stderr);
       exit (2);
     @}
-        
+
   /* Disable secure memory.  */
   gcry_control (GCRYCTL_DISABLE_SECMEM, 0);
 
@@ -383,7 +402,7 @@ and freed memory, you need to initialize Libgcrypt this way:
   gcry_control (GCRYCTL_SUSPEND_SECMEM_WARN);
 
   /* ... If required, other initialization goes here.  Note that the
-     process might still be running with increased privileges and that 
+     process might still be running with increased privileges and that
      the secure memory has not been intialized.  */
 
   /* Allocate a pool of 16k secure memory.  This make the secure memory
@@ -391,8 +410,8 @@ and freed memory, you need to initialize Libgcrypt this way:
   gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);
 
 @anchor{sample-use-resume-secmem}
-  /* It is now okay to let Libgcrypt complain when there was/is a problem
-     with the secure memory. */
+  /* It is now okay to let Libgcrypt complain when there was/is
+     a problem with the secure memory. */
   gcry_control (GCRYCTL_RESUME_SECMEM_WARN);
 
   /* ... If required, other initialization goes here.  */
@@ -410,7 +429,7 @@ want to check for finished initialization using:
     @{
       fputs ("libgcrypt has not been initialized\n", stderr);
       abort ();
-    @}       
+    @}
 @end example
 
 Instead of terminating the process, the library may instead print a
@@ -422,7 +441,7 @@ multi-threading below for more pitfalls.
 @node Multi-Threading
 @section Multi-Threading
 
-As mentioned earlier, the Libgcrypt library is 
+As mentioned earlier, the Libgcrypt library is
 thread-safe if you adhere to the following requirements:
 
 @itemize @bullet
@@ -454,8 +473,18 @@ both such libraries are then linked into the same application.  To
 make it a bit simpler for you, this will probably work, but only if
 both libraries have the same requirement for the thread package.  This
 is currently only supported for the non-threaded case, GNU Pth and
-pthread.  Support for more thread packages is easy to add, so contact
-us if you require it.
+pthread.
+
+If you use pthread and your applications forks and does not directly
+call exec (even calling stdio functions), all kind of problems may
+occur.  Future versions of Libgcrypt will try to cleanup using
+pthread_atfork but even that may lead to problems.  This is a common
+problem with almost all applications using pthread and fork.
+
+Note that future versions of Libgcrypt will drop this flexible thread
+support and instead only support the platforms standard thread
+implementation.
+
 
 @item
 The function @code{gcry_check_version} must be called before any other
@@ -475,10 +504,10 @@ Synchronization''.  For other thread packages, more relaxed or more
 strict rules may apply.}.
 
 @item
-
 Just like the function @code{gpg_strerror}, the function
 @code{gcry_strerror} is not thread safe.  You have to use
 @code{gpg_strerror_r} instead.
+
 @end itemize
 
 
@@ -488,24 +517,39 @@ necessary thread callbacks for PThread and for GNU Pth:
 @table @code
 @item GCRY_THREAD_OPTION_PTH_IMPL
 
-This macro defines the following (static) symbols: gcry_pth_init,
-gcry_pth_mutex_init, gcry_pth_mutex_destroy, gcry_pth_mutex_lock,
-gcry_pth_mutex_unlock, gcry_pth_read, gcry_pth_write, gcry_pth_select,
-gcry_pth_waitpid, gcry_pth_accept, gcry_pth_connect, gcry_threads_pth.
+This macro defines the following (static) symbols:
+@code{gcry_pth_init}, @code{gcry_pth_mutex_init},
+@code{gcry_pth_mutex_destroy}, @code{gcry_pth_mutex_lock},
+@code{gcry_pth_mutex_unlock}, @code{gcry_pth_read},
+@code{gcry_pth_write}, @code{gcry_pth_select},
+@code{gcry_pth_waitpid}, @code{gcry_pth_accept},
+@code{gcry_pth_connect}, @code{gcry_threads_pth}.
+
+After including this macro, @code{gcry_control()} shall be used with a
+command of @code{GCRYCTL_SET_THREAD_CBS} in order to register the
+thread callback structure named ``gcry_threads_pth''.  Example:
+
+@smallexample
+  ret = gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pth);
+@end smallexample
 
-After including this macro, gcry_control() shall be used with a
-command of GCRYCTL_SET_THREAD_CBS in order to register the thread
-callback structure named ``gcry_threads_pth''.
 
 @item GCRY_THREAD_OPTION_PTHREAD_IMPL
 
 This macro defines the following (static) symbols:
-gcry_pthread_mutex_init, gcry_pthread_mutex_destroy, gcry_mutex_lock,
-gcry_mutex_unlock, gcry_threads_pthread.
+@code{gcry_pthread_mutex_init}, @code{gcry_pthread_mutex_destroy},
+@code{gcry_pthread_mutex_lock}, @code{gcry_pthread_mutex_unlock},
+@code{gcry_threads_pthread}.
+
+After including this macro, @code{gcry_control()} shall be used with a
+command of @code{GCRYCTL_SET_THREAD_CBS} in order to register the
+thread callback structure named ``gcry_threads_pthread''.  Example:
+
+@smallexample
+  ret = gcry_control (GCRYCTL_SET_THREAD_CBS, &gcry_threads_pthread);
+@end smallexample
+
 
-After including this macro, gcry_control() shall be used with a
-command of GCRYCTL_SET_THREAD_CBS in order to register the thread
-callback structure named ``gcry_threads_pthread''.
 @end table
 
 Note that these macros need to be terminated with a semicolon.  Keep
@@ -513,12 +557,13 @@ in mind that these are convenient macros for C programmers; C++
 programmers might have to wrap these macros in an ``extern C'' body.
 
 
+@node Enabling FIPS mode
+@section How to enable the FIPS mode
+@cindex FIPS mode
+@cindex FIPS 140
 
-@node FIPS mode
-@section FIPS Mode
-
-Libgcrypt may be used in a FIPS 140 mode.  Note, that this does not
-necessary mean that Libcgrypt is n appoved FIPS 140-2 module.  Check the
+Libgcrypt may be used in a FIPS 140-2 mode.  Note, that this does not
+necessary mean that Libcgrypt is an appoved FIPS 140-2 module.  Check the
 NIST database at @url{http://csrc.nist.gov/groups/STM/cmvp/} to see what
 versions of Libgcrypt are approved.
 
@@ -528,28 +573,36 @@ explicitly.  Three alternative mechanisms are provided to switch
 Libgcrypt into this mode:
 
 @itemize
-@item 
+@item
 If the file @file{/proc/sys/crypto/fips_enabled} exists and contains a
 numeric value other than @code{0}, Libgcrypt is put into FIPS mode at
 initialization time.  Obviously this works only on systems with a
-@code{proc} file system (ie.e GNU/Linux).
+@code{proc} file system (i.e. GNU/Linux).
 
-@item 
-If the file @file{/etc/gcrypt/fips140.force} exists, Libgcrypt is put
+@item
+If the file @file{/etc/gcrypt/fips_enabled} exists, Libgcrypt is put
 into FIPS mode at initialization time.  Note that this filename is
 hardwired and does not depend on any configuration options.
 
-@item 
-If the applications requests FIPS mode using the control command
+@item
+If the application requests FIPS mode using the control command
 @code{GCRYCTL_FORCE_FIPS_MODE}.  This must be done prior to any
 initialization (i.e. before @code{gcry_check_version}).
 
 @end itemize
 
-Note that once Libgcrypt has been put into FIPS mode, it is not possible
-to switch back to standard mode without terminating the process first.
-If the log verbosity level of Libgcrypt has been set to at least 2, the
-state transitions and the selftests are logged.
+@cindex Enforced FIPS mode
+
+In addition to the standard FIPS mode, Libgcrypt may also be put into
+an Enforced FIPS mode by writing a non-zero value into the file
+@file{/etc/gcrypt/fips_enabled}.  The Enforced FIPS mode helps to
+detect applications which don't fulfill all requirements for using
+Libgcrypt in FIPS mode (@pxref{FIPS Mode}).
+
+Once Libgcrypt has been put into FIPS mode, it is not possible to
+switch back to standard mode without terminating the process first.
+If the logging verbosity level of Libgcrypt has been set to at least
+2, the state transitions and the self-tests are logged.
 
 
 
@@ -561,7 +614,6 @@ state transitions and the selftests are logged.
 
 @menu
 * Controlling the library::     Controlling Libgcrypt's behavior.
-* Modules::                     Description of extension modules.
 * Error Handling::              Error codes and such.
 @end menu
 
@@ -576,11 +628,12 @@ arguments can or have to be provided.
 
 @table @code
 @item GCRYCTL_ENABLE_M_GUARD; Arguments: none
-This command enables the built-in memory guard.  It must not be used to
-activate the memory guard after the memory management has already been
-used; therefore it can ONLY be used at initialization time.  Note that
-the memory guard is NOT used when the user of the library has set his
-own memory management callbacks.
+This command enables the built-in memory guard.  It must not be used
+to activate the memory guard after the memory management has already
+been used; therefore it can ONLY be used before
+@code{gcry_check_version}.  Note that the memory guard is NOT used
+when the user of the library has set his own memory management
+callbacks.
 
 @item GCRYCTL_ENABLE_QUICK_RANDOM; Arguments: none
 This command inhibits the use the very secure random quality level
@@ -613,13 +666,14 @@ to disable secure memory is to use @code{GCRYCTL_DISABLE_SECMEM} right
 after initialization.
 
 @item GCRYCTL_DISABLE_SECMEM; Arguments: none
-This command disables the use of secure memory. 
+This command disables the use of secure memory.  If this command is
+used in FIPS mode, FIPS mode will be disabled and the function
+@code{gcry_fips_mode_active} returns false.  However, in Enforced FIPS
+mode this command has no effect at all.
 
 Many applications do not require secure memory, so they should disable
-it right away.  There won't be a problem if not disabling it unless one
-makes use of a feature which requires secure memory - in that case the
-process will abort because the secmem is not initialized.  This command
-should be executed right after @code{gcry_check_version}.
+it right away.  This command should be executed right after
+@code{gcry_check_version}.
 
 @item GCRYCTL_INIT_SECMEM; Arguments: int nbytes
 This command is used to allocate a pool of secure memory and thus
@@ -632,11 +686,12 @@ value of 1 to request that default size.
 @item GCRYCTL_TERM_SECMEM; Arguments: none
 This command zeroises the secure memory and destroys the handler.  The
 secure memory pool may not be used anymore after running this command.
-If the secure memory pool as already been destroyed, this command has no
-effect.  Applications might want to run this command from their exit
-handler to make sure that the secure memory gets properly destroyed.
-This command is not necessary thread-safe but that should not be needed
-in cleanup code.  It may be called from a signal handler.
+If the secure memory pool as already been destroyed, this command has
+no effect.  Applications might want to run this command from their
+exit handler to make sure that the secure memory gets properly
+destroyed.  This command is not necessarily thread-safe but that
+should not be needed in cleanup code.  It may be called from a signal
+handler.
 
 @item GCRYCTL_DISABLE_SECMEM_WARN; Arguments: none
 Disable warning messages about problems with the secure memory
@@ -644,9 +699,9 @@ subsystem. This command should be run right after
 @code{gcry_check_version}.
 
 @item GCRYCTL_SUSPEND_SECMEM_WARN; Arguments: none
-Postpone warning messages from the secure memory subsystem. 
+Postpone warning messages from the secure memory subsystem.
 @xref{sample-use-suspend-secmem,,the initialization example}, on how to
-use it. 
+use it.
 
 @item GCRYCTL_RESUME_SECMEM_WARN; Arguments: none
 Resume warning messages from the secure memory subsystem.
@@ -686,30 +741,30 @@ an issue if random of @code{GCRY_VERY_STRONG_RANDOM} quality is
 requested as in this case enough extra entropy gets mixed.  It is also
 not an issue when using Linux (rndlinux driver), because this one
 guarantees to read full 16 bytes from /dev/urandom and thus there is no
-way for an attacker without kernel access to conrol these 16 bytes.
+way for an attacker without kernel access to control these 16 bytes.
 
 @item GCRYCTL_SET_VERBOSITY; Arguments: int level
 This command sets the verbosity of the logging.  A level of 0 disables
 all extra logging whereas positive numbers enable more verbose logging.
 The level may be changed at any time but be aware that no memory
-syncronization is done so the effect of this command might not
+synchronization is done so the effect of this command might not
 immediately show up in other threads.  This command may even be used
-prioe to @code{gcry_check_version}.
+prior to @code{gcry_check_version}.
 
 @item GCRYCTL_SET_DEBUG_FLAGS; Arguments: unsigned int flags
 Set the debug flag bits as given by the argument.  Be aware that that no
-memory syncronization is done so the effect of this command might not
+memory synchronization is done so the effect of this command might not
 immediately show up in other threads.  The debug flags are not
 considered part of the API and thus may change without notice.  As of
 now bit 0 enables debugging of cipher functions and bit 1 debugging of
-multi-precision-integers.  This command may even be used prioe to
+multi-precision-integers.  This command may even be used prior to
 @code{gcry_check_version}.
 
 @item GCRYCTL_CLEAR_DEBUG_FLAGS; Arguments: unsigned int flags
 Set the debug flag bits as given by the argument.  Be aware that that no
-memory syncronization is done so the effect of this command might not
+memory synchronization is done so the effect of this command might not
 immediately show up in other threads.  This command may even be used
-prioe to @code{gcry_check_version}.
+prior to @code{gcry_check_version}.
 
 @item GCRYCTL_DISABLE_INTERNAL_LOCKING; Arguments: none
 This command does nothing.  It exists only for backward compatibility.
@@ -721,7 +776,7 @@ certain internal subsystems running.  The common and suggested way to
 do this basic intialization is by calling gcry_check_version.
 
 @item GCRYCTL_INITIALIZATION_FINISHED; Arguments: none
-This command tells the libray that the application has finished the
+This command tells the library that the application has finished the
 intialization.
 
 @item GCRYCTL_INITIALIZATION_FINISHED_P; Arguments: none
@@ -762,39 +817,44 @@ the intialization has been finished but not before a gcry_version_check.
 This command returns true if the library is in FIPS mode.  Note, that
 this is no indication about the current state of the library.  This
 command may be used before the intialization has been finished but not
-before a gcry_version_check.
+before a gcry_version_check.  An application may use this command or
+the convenience macro below to check whether FIPS mode is actually
+active.
+
+@deftypefun int gcry_fips_mode_active (void)
+
+Returns true if the FIPS mode is active.  Note that this is
+implemented as a macro.
+@end deftypefun
+
+
 
 @item GCRYCTL_FORCE_FIPS_MODE; Arguments: none
 Running this command puts the library into FIPS mode.  If the library is
-already in FIPS mode, a selftest is triggered and thus the library will
+already in FIPS mode, a self-test is triggered and thus the library will
 be put into operational state.  This command may be used before a call
 to gcry_check_version and that is actually the recommended way to let an
 application switch the library into FIPS mode.  Note that Libgcrypt will
 reject an attempt to switch to fips mode during or after the intialization.
 
+@item GCRYCTL_SELFTEST; Arguments: none
+This may be used at anytime to have the library run all implemented
+self-tests.  It works in standard and in FIPS mode.  Returns 0 on
+success or an error code on failure.
 
-@end table
-
-@end deftypefun
-
-@node Modules
-@section Modules
+@item GCRYCTL_DISABLE_HWF; Arguments: const char *name
 
-Libgcrypt supports the use of `extension modules', which
-implement algorithms in addition to those already built into the library
-directly.
+Libgcrypt detects certain features of the CPU at startup time.  For
+performace tests it is sometimes required not to use such a feature.
+This option may be used to disabale a certain feature; i.e. Libgcrypt
+behaves as if this feature has not been detected.  Note that the
+detection code might be run if the feature has been disabled.  This
+command must be used at initialization time; i.e. before calling
+@code{gcry_check_version}.
 
-@deftp {Data type} gcry_module_t
-This data type represents a `module'.
-@end deftp
+@end table
 
-Functions registering modules provided by the user take a `module
-specification structure' as input and return a value of
-@code{gcry_module_t} and an ID that is unique in the modules'
-category.  This ID can be used to reference the newly registered
-module.  After registering a module successfully, the new functionality
-should be able to be used through the normal functions provided by
-Libgcrypt until it is unregistered again.
+@end deftypefun
 
 @c **********************************************************
 @c *******************  Errors  ****************************
@@ -1146,7 +1206,7 @@ diagnostic message to the user.
 
 
 @deftypefun {const char *} gcry_strsource (@w{gcry_error_t @var{err}})
-The function @code{gcry_strerror} returns a pointer to a statically
+The function @code{gcry_strsource} returns a pointer to a statically
 allocated string containing a description of the error source
 contained in the error value @var{err}.  This string can be used to
 output a diagnostic message to the user.
@@ -1160,7 +1220,8 @@ above:
   gcry_cipher_hd_t handle;
   gcry_error_t err = 0;
 
-  err = gcry_cipher_open (&handle, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_CBC, 0);
+  err = gcry_cipher_open (&handle, GCRY_CIPHER_AES,
+                          GCRY_CIPHER_MODE_CBC, 0);
   if (err)
     @{
       fprintf (stderr, "Failure: %s/%s\n",
@@ -1205,7 +1266,8 @@ this purpose.
 @deftypefun void gcry_set_progress_handler (gcry_handler_progress_t @var{cb}, void *@var{cb_data})
 
 This function installs @var{cb} as the `Progress handler' function.
-@var{cb} must be defined as follows:
+It may be used only during initialization.  @var{cb} must be defined
+as follows:
 
 @example
 void
@@ -1279,7 +1341,14 @@ following function:
 
 @deftypefun void gcry_set_allocation_handler (gcry_handler_alloc_t @var{func_alloc}, gcry_handler_alloc_t @var{func_alloc_secure}, gcry_handler_secure_check_t @var{func_secure_check}, gcry_handler_realloc_t @var{func_realloc}, gcry_handler_free_t @var{func_free})
 Install the provided functions and use them instead of the built-in
-functions for doing memory allocation.
+functions for doing memory allocation.  Using this function is in
+general not recommended because the standard Libgcrypt allocation
+functions are guaranteed to zeroize memory if needed.
+
+This function may be used only during initialization and may not be
+used in fips mode.
+
+
 @end deftypefun
 
 @node Error handler
@@ -1290,12 +1359,18 @@ are called by Libgcrypt in case certain error conditions occur.  They
 may and should be registered prior to calling @code{gcry_check_version}.
 
 @deftp {Data type} gcry_handler_no_mem_t
-This type is defined as: @code{void (*gcry_handler_no_mem_t) (void *, size_t, unsigned int)}
+This type is defined as: @code{int (*gcry_handler_no_mem_t) (void *, size_t, unsigned int)}
 @end deftp
 @deftypefun void gcry_set_outofcore_handler (gcry_handler_no_mem_t @var{func_no_mem}, void *@var{cb_data})
 This function registers @var{func_no_mem} as `out-of-core handler',
 which means that it will be called in the case of not having enough
-memory available.
+memory available.  The handler is called with 3 arguments: The first
+one is the pointer @var{cb_data} as set with this function, the second
+is the requested memory size and the last being a flag.  If bit 0 of
+the flag is set, secure memory has been requested.  The handler should
+either return true to indicate that Libgcrypt should try again
+allocating memory or return false to let Libgcrypt use its default
+fatal error handler.
 @end deftypefun
 
 @deftp {Data type} gcry_handler_error_t
@@ -1335,7 +1410,6 @@ building blocks provided by Libgcrypt.
 
 @menu
 * Available ciphers::           List of ciphers supported by the library.
-* Cipher modules::              How to work with cipher modules.
 * Available cipher modes::      List of cipher modes supported by the library.
 * Working with cipher handles::  How to perform operations related to cipher handles.
 * General cipher functions::    General cipher functions independent of cipher handles.
@@ -1350,53 +1424,67 @@ This is not a real algorithm but used by some functions as error return.
 The value always evaluates to false.
 
 @item GCRY_CIPHER_IDEA
+@cindex IDEA
 This is the IDEA algorithm.  The constant is provided but there is
 currently no implementation for it because the algorithm is patented.
 
 @item GCRY_CIPHER_3DES
+@cindex 3DES
+@cindex Triple-DES
+@cindex DES-EDE
+@cindex Digital Encryption Standard
 Triple-DES with 3 Keys as EDE.  The key size of this algorithm is 168 but
 you have to pass 192 bits because the most significant bits of each byte
 are ignored.
 
 @item GCRY_CIPHER_CAST5
+@cindex CAST5
 CAST128-5 block cipher algorithm.  The key size is 128 bits.
-       
+
 @item GCRY_CIPHER_BLOWFISH
+@cindex Blowfish
 The blowfish algorithm. The current implementation allows only for a key
 size of 128 bits.
 
 @item GCRY_CIPHER_SAFER_SK128
 Reserved and not currently implemented.
 
-@item GCRY_CIPHER_DES_SK         
+@item GCRY_CIPHER_DES_SK
 Reserved and not currently implemented.
-@item  GCRY_CIPHER_AES        
+
+@item  GCRY_CIPHER_AES
 @itemx GCRY_CIPHER_AES128
 @itemx GCRY_CIPHER_RIJNDAEL
 @itemx GCRY_CIPHER_RIJNDAEL128
+@cindex Rijndael
+@cindex AES
+@cindex Advanced Encryption Standard
 AES (Rijndael) with a 128 bit key.
 
-@item  GCRY_CIPHER_AES192     
+@item  GCRY_CIPHER_AES192
 @itemx GCRY_CIPHER_RIJNDAEL192
 AES (Rijndael) with a 192 bit key.
 
-@item  GCRY_CIPHER_AES256 
+@item  GCRY_CIPHER_AES256
 @itemx GCRY_CIPHER_RIJNDAEL256
 AES (Rijndael) with a 256 bit key.
-    
+
 @item  GCRY_CIPHER_TWOFISH
+@cindex Twofish
 The Twofish algorithm with a 256 bit key.
-    
+
 @item  GCRY_CIPHER_TWOFISH128
 The Twofish algorithm with a 128 bit key.
-    
-@item  GCRY_CIPHER_ARCFOUR   
+
+@item  GCRY_CIPHER_ARCFOUR
+@cindex Arcfour
+@cindex RC4
 An algorithm which is 100% compatible with RSA Inc.'s RC4 algorithm.
 Note that this is a stream cipher and must be used very carefully to
-avoid a couple of weaknesses. 
+avoid a couple of weaknesses.
 
-@item  GCRY_CIPHER_DES       
+@item  GCRY_CIPHER_DES
+@cindex DES
 Standard DES with a 56 bit key. You need to pass 64 bit but the high
 bits of each byte are ignored.  Note, that this is a weak algorithm
 which can be broken in reasonable time using a brute force approach.
@@ -1404,137 +1492,30 @@ which can be broken in reasonable time using a brute force approach.
 @item  GCRY_CIPHER_SERPENT128
 @itemx GCRY_CIPHER_SERPENT192
 @itemx GCRY_CIPHER_SERPENT256
+@cindex Serpent
 The Serpent cipher from the AES contest.
 
 @item  GCRY_CIPHER_RFC2268_40
 @itemx GCRY_CIPHER_RFC2268_128
+@cindex rfc-2268
+@cindex RC2
 Ron's Cipher 2 in the 40 and 128 bit variants.  Note, that we currently
 only support the 40 bit variant.  The identifier for 128 is reserved for
 future use.
 
 @item GCRY_CIPHER_SEED
+@cindex Seed (cipher)
 A 128 bit cipher as described by RFC4269.
 
 @item  GCRY_CIPHER_CAMELLIA128
 @itemx GCRY_CIPHER_CAMELLIA192
 @itemx GCRY_CIPHER_CAMELLIA256
+@cindex Camellia
 The Camellia cipher by NTT.  See
 @uref{http://info.isl.ntt.co.jp/@/crypt/@/eng/@/camellia/@/specifications.html}.
 
 @end table
 
-@node Cipher modules
-@section Cipher modules
-
-Libgcrypt makes it possible to load additional `cipher modules'; these
-ciphers can be used just like the cipher algorithms that are built
-into the library directly.  For an introduction into extension
-modules, see @xref{Modules}.
-
-@deftp {Data type} gcry_cipher_spec_t
-This is the `module specification structure' needed for registering
-cipher modules, which has to be filled in by the user before it can be
-used to register a module.  It contains the following members:
-
-@table @code
-@item const char *name
-The primary name of the algorithm.
-@item const char **aliases
-A list of strings that are `aliases' for the algorithm.  The list must
-be terminated with a NULL element.
-@item gcry_cipher_oid_spec_t *oids
-A list of OIDs that are to be associated with the algorithm.  The
-list's last element must have it's `oid' member set to NULL.  See
-below for an explanation of this type.
-@item size_t blocksize
-The block size of the algorithm, in bytes.
-@item size_t keylen
-The length of the key, in bits.
-@item size_t contextsize
-The size of the algorithm-specific `context', that should be allocated
-for each handle.
-@item gcry_cipher_setkey_t setkey
-The function responsible for initializing a handle with a provided
-key.  See below for a description of this type.
-@item gcry_cipher_encrypt_t encrypt
-The function responsible for encrypting a single block.  See below for
-a description of this type.
-@item gcry_cipher_decrypt_t decrypt
-The function responsible for decrypting a single block.  See below for
-a description of this type.
-@item gcry_cipher_stencrypt_t stencrypt
-Like `encrypt', for stream ciphers.  See below for a description of
-this type.
-@item gcry_cipher_stdecrypt_t stdecrypt
-Like `decrypt', for stream ciphers.  See below for a description of
-this type.
-@end table
-@end deftp
-
-@deftp {Data type} gcry_cipher_oid_spec_t
-This type is used for associating a user-provided algorithm
-implementation with certain OIDs.  It contains the following members:
-@table @code
-@item const char *oid
-Textual representation of the OID.
-@item int mode
-Cipher mode for which this OID is valid.
-@end table
-@end deftp
-
-@deftp {Data type} gcry_cipher_setkey_t
-Type for the `setkey' function, defined as: gcry_err_code_t
-(*gcry_cipher_setkey_t) (void *c, const unsigned char *key, unsigned
-keylen)
-@end deftp
-
-@deftp {Data type} gcry_cipher_encrypt_t
-Type for the `encrypt' function, defined as: gcry_err_code_t
-(*gcry_cipher_encrypt_t) (void *c, const unsigned char *outbuf, const
-unsigned char *inbuf)
-@end deftp
-
-@deftp {Data type} gcry_cipher_decrypt_t
-Type for the `decrypt' function, defined as: gcry_err_code_t
-(*gcry_cipher_decrypt_t) (void *c, const unsigned char *outbuf, const
-unsigned char *inbuf)
-@end deftp
-
-@deftp {Data type} gcry_cipher_stencrypt_t
-Type for the `stencrypt' function, defined as: gcry_err_code_t
-(*gcry_cipher_stencrypt_t) (void *c, const unsigned char *outbuf, const
-unsigned char *, unsigned int n)
-@end deftp
-
-@deftp {Data type} gcry_cipher_stdecrypt_t
-Type for the `stdecrypt' function, defined as: gcry_err_code_t
-(*gcry_cipher_stdecrypt_t) (void *c, const unsigned char *outbuf, const
-unsigned char *, unsigned int n)
-@end deftp
-
-@deftypefun gcry_error_t gcry_cipher_register (gcry_cipher_spec_t *@var{cipher}, unsigned int *algorithm_id, gcry_module_t *@var{module})
-
-Register a new cipher module whose specification can be found in
-@var{cipher}.  On success, a new algorithm ID is stored in
-@var{algorithm_id} and a pointer representing this module is stored
-in @var{module}.
-@end deftypefun
-
-@deftypefun void gcry_cipher_unregister (gcry_module_t @var{module})
-Unregister the cipher identified by @var{module}, which must have been
-registered with gcry_cipher_register.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_cipher_list (int *@var{list}, int *@var{list_length})
-Get a list consisting of the IDs of the loaded cipher modules.  If
-@var{list} is zero, write the number of loaded cipher modules to
-@var{list_length} and return.  If @var{list} is non-zero, the first
-*@var{list_length} algorithm IDs are stored in @var{list}, which must
-be of according size.  In case there are less cipher modules than
-*@var{list_length}, *@var{list_length} is updated to the correct
-number.
-@end deftypefun
-
 @node Available cipher modes
 @section Available cipher modes
 
@@ -1545,23 +1526,43 @@ if Libgcrypt is not used in FIPS mode and if any debug flag has been
 set, this mode may be used to bypass the actual encryption.
 
 @item GCRY_CIPHER_MODE_ECB
-Electronic Codebook mode.  
+@cindex ECB, Electronic Codebook mode
+Electronic Codebook mode.
 
 @item GCRY_CIPHER_MODE_CFB
-Cipher Feedback mode.
+@cindex CFB, Cipher Feedback mode
+Cipher Feedback mode.  The shift size equals the block size of the
+cipher (e.g. for AES it is CFB-128).
 
 @item  GCRY_CIPHER_MODE_CBC
+@cindex CBC, Cipher Block Chaining mode
 Cipher Block Chaining mode.
 
 @item GCRY_CIPHER_MODE_STREAM
 Stream mode, only to be used with stream cipher algorithms.
 
 @item GCRY_CIPHER_MODE_OFB
+@cindex OFB, Output Feedback mode
 Output Feedback mode.
 
 @item  GCRY_CIPHER_MODE_CTR
+@cindex CTR, Counter mode
 Counter mode.
 
+@item  GCRY_CIPHER_MODE_AESWRAP
+@cindex AES-Wrap mode
+This mode is used to implement the AES-Wrap algorithm according to
+RFC-3394.  It may be used with any 128 bit block length algorithm,
+however the specs require one of the 3 AES algorithms.  These special
+conditions apply: If @code{gcry_cipher_setiv} has not been used the
+standard IV is used; if it has been used the lower 64 bit of the IV
+are used as the Alternative Initial Value.  On encryption the provided
+output buffer must be 64 bit (8 byte) larger than the input buffer;
+in-place encryption is still allowed.  On decryption the output buffer
+may be specified 64 bit (8 byte) shorter than then input buffer.  As
+per specs the input length must be at least 128 bits and the length
+must be a multiple of 64 bits.
+
 @end table
 
 @node Working with cipher handles
@@ -1588,10 +1589,11 @@ The cipher mode to use must be specified via @var{mode}.  See
 @xref{Available cipher modes}, for a list of supported cipher modes
 and the according constants.  Note that some modes are incompatible
 with some algorithms - in particular, stream mode
-(GCRY_CIPHER_MODE_STREAM) only works with stream ciphers. Any block
-cipher mode (GCRY_CIPHER_MODE_ECB, GCRY_CIPHER_MODE_CBC,
-GCRY_CIPHER_MODE_CFB, GCRY_CIPHER_MODE_OFB or GCRY_CIPHER_MODE_CTR)
-will work with any block cipher algorithm.
+(@code{GCRY_CIPHER_MODE_STREAM}) only works with stream ciphers. Any
+block cipher mode (@code{GCRY_CIPHER_MODE_ECB},
+@code{GCRY_CIPHER_MODE_CBC}, @code{GCRY_CIPHER_MODE_CFB},
+@code{GCRY_CIPHER_MODE_OFB} or @code{GCRY_CIPHER_MODE_CTR}) will work
+with any block cipher algorithm.
 
 The third argument @var{flags} can either be passed as @code{0} or as
 the bit-wise OR of the following constants.
@@ -1601,26 +1603,31 @@ the bit-wise OR of the following constants.
 Make sure that all operations are allocated in secure memory.  This is
 useful when the key material is highly confidential.
 @item GCRY_CIPHER_ENABLE_SYNC
+@cindex sync mode (OpenPGP)
 This flag enables the CFB sync mode, which is a special feature of
-Libgcrypt's CFB mode implementation to allow for OpenPGP's CFB variant. 
+Libgcrypt's CFB mode implementation to allow for OpenPGP's CFB variant.
 See @code{gcry_cipher_sync}.
 @item GCRY_CIPHER_CBC_CTS
+@cindex cipher text stealing
 Enable cipher text stealing (CTS) for the CBC mode.  Cannot be used
 simultaneous as GCRY_CIPHER_CBC_MAC.  CTS mode makes it possible to
 transform data of almost arbitrary size (only limitation is that it
 must be greater than the algorithm's block size).
 @item GCRY_CIPHER_CBC_MAC
+@cindex CBC-MAC
 Compute CBC-MAC keyed checksums.  This is the same as CBC mode, but
 only output the last block.  Cannot be used simultaneous as
 GCRY_CIPHER_CBC_CTS.
 @end table
-@end deftypefun 
+@end deftypefun
 
 Use the following function to release an existing handle:
 
 @deftypefun void gcry_cipher_close (gcry_cipher_hd_t @var{h})
 
 This function releases the context created by @code{gcry_cipher_open}.
+It also zeroises all sensitive information associated with this cipher
+handle.
 @end deftypefun
 
 In order to use a handle for performing cryptographic operations, a
@@ -1629,11 +1636,11 @@ In order to use a handle for performing cryptographic operations, a
 @deftypefun gcry_error_t gcry_cipher_setkey (gcry_cipher_hd_t @var{h}, const void *@var{k}, size_t @var{l})
 
 Set the key @var{k} used for encryption or decryption in the context
-denoted by the handle @var{h}.  The length @var{l} of the key @var{k}
-must match the required length of the algorithm set for this context or
-be in the allowed range for algorithms with variable key size.  The
-function checks this and returns an error if there is a problem.  A
-caller should always check for an error.
+denoted by the handle @var{h}.  The length @var{l} (in bytes) of the
+key @var{k} must match the required length of the algorithm set for
+this context or be in the allowed range for algorithms with variable
+key size.  The function checks this and returns an error if there is a
+problem.  A caller should always check for an error.
 
 @end deftypefun
 
@@ -1645,18 +1652,18 @@ value.  To set the IV or CTR, use these functions:
 @deftypefun gcry_error_t gcry_cipher_setiv (gcry_cipher_hd_t @var{h}, const void *@var{k}, size_t @var{l})
 
 Set the initialization vector used for encryption or decryption. The
-vector is passed as the buffer @var{K} of length @var{l} and copied to
-internal data structures.  The function checks that the IV matches the
-requirement of the selected algorithm and mode. 
+vector is passed as the buffer @var{K} of length @var{l} bytes and
+copied to internal data structures.  The function checks that the IV
+matches the requirement of the selected algorithm and mode.
 @end deftypefun
 
 @deftypefun gcry_error_t gcry_cipher_setctr (gcry_cipher_hd_t @var{h}, const void *@var{c}, size_t @var{l})
 
 Set the counter vector used for encryption or decryption. The counter
-is passed as the buffer @var{c} of length @var{l} and copied to
+is passed as the buffer @var{c} of length @var{l} bytes and copied to
 internal data structures.  The function checks that the counter
 matches the requirement of the selected algorithm (i.e., it must be
-the same size as the block size).  
+the same size as the block size).
 @end deftypefun
 
 @deftypefun gcry_error_t gcry_cipher_reset (gcry_cipher_hd_t @var{h})
@@ -1758,7 +1765,7 @@ information requested as @var{what}. The result is either returned as
 the return code of the function or copied to the provided @var{buffer}
 whose allocated length must be available in an integer variable with the
 address passed in @var{nbytes}.  This variable will also receive the
-actual used length of the buffer. 
+actual used length of the buffer.
 
 Here is a list of supported codes for @var{what}:
 
@@ -1768,23 +1775,52 @@ Here is a list of supported codes for @var{what}:
 Return the length of the key. If the algorithm supports multiple key
 lengths, the maximum supported value is returned.  The length is
 returned as number of octets (bytes) and not as number of bits in
-@var{nbytes}; @var{buffer} must be zero.
+@var{nbytes}; @var{buffer} must be zero.  Note that it is usually
+better to use the convenience function
+@code{gcry_cipher_get_algo_keylen}.
 
 @item GCRYCTL_GET_BLKLEN:
 Return the block length of the algorithm.  The length is returned as a
-number of octets in @var{nbytes}; @var{buffer} must be zero.
+number of octets in @var{nbytes}; @var{buffer} must be zero.  Note
+that it is usually better to use the convenience function
+@code{gcry_cipher_get_algo_blklen}.
 
 @item GCRYCTL_TEST_ALGO:
 Returns @code{0} when the specified algorithm is available for use.
 @var{buffer} and @var{nbytes} must be zero.
-@end table  
+
+@end table
 @c end constants for gcry_cipher_algo_info
 
 @end deftypefun
 @c end gcry_cipher_algo_info
 
-@deftypefun const char *gcry_cipher_algo_name (int @var{algo})
+@deftypefun size_t gcry_cipher_get_algo_keylen (@var{algo})
+
+This function returns length of the key for algorithm @var{algo}.  If
+the algorithm supports multiple key lengths, the maximum supported key
+length is returned.  On error @code{0} is returned.  The key length is
+returned as number of octets.
+
+This is a convenience functions which should be preferred over
+@code{gcry_cipher_algo_info} because it allows for proper type
+checking.
+@end deftypefun
+@c end gcry_cipher_get_algo_keylen
+
+@deftypefun size_t gcry_cipher_get_algo_blklen (int @var{algo})
+
+This functions returns the blocklength of the algorithm @var{algo}
+counted in octets.  On error @code{0} is returned.
+
+This is a convenience functions which should be preferred over
+@code{gcry_cipher_algo_info} because it allows for proper type
+checking.
+@end deftypefun
+@c end gcry_cipher_get_algo_blklen
+
+
+@deftypefun {const char *} gcry_cipher_algo_name (int @var{algo})
 
 @code{gcry_cipher_algo_name} returns a string with the name of the
 cipher algorithm @var{algo}.  If the algorithm is not known or another
@@ -1824,11 +1860,8 @@ S-expressions.
 @menu
 * Available algorithms::        Algorithms supported by the library.
 * Used S-expressions::          Introduction into the used S-expression.
-* Public key modules::          How to work with public key modules.
 * Cryptographic Functions::     Functions for performing the cryptographic actions.
 * General public-key related Functions::  General functions, not implementing any cryptography.
-
-* AC Interface::                Alternative interface to public key functions.
 @end menu
 
 @node Available algorithms
@@ -1846,9 +1879,10 @@ called S-expressions (see
 @uref{http://people.csail.mit.edu/@/rivest/@/sexp.html}) and does not work
 with contexts as most of the other building blocks of Libgcrypt do.
 
+@noindent
 The following information are stored in S-expressions:
 
-@table @asis
+@itemize @asis
 @item keys
 
 @item plain text data
@@ -1857,7 +1891,7 @@ The following information are stored in S-expressions:
 
 @item signatures
 
-@end table
+@end itemize
 
 @noindent
 To describe how Libgcrypt expect keys, we use examples. Note that
@@ -1929,7 +1963,7 @@ but greatly improve the performance.  Either all of these optional
 parameters must be given or none of them.  They are mandatory for
 gcry_pk_testkey.
 
-Note that OpenSSL uses slighly different parameters: @math{q < p} and 
+Note that OpenSSL uses slighly different parameters: @math{q < p} and
  @math{u = q^{-1} \bmod p}.  To use these parameters you will need to
 swap the values and recompute @math{u}.  Here is example code to do this:
 
@@ -2064,144 +2098,13 @@ As usual the OIDs may optionally be prefixed with the string @code{OID.}
 or @code{oid.}.
 
 
-
-@node Public key modules
-@section Public key modules
-
-Libgcrypt makes it possible to load additional `public key
-modules'; these public key algorithms can be used just like the
-algorithms that are built into the library directly.  For an
-introduction into extension modules, see @xref{Modules}.
-
-@deftp {Data type} gcry_pk_spec_t
-This is the `module specification structure' needed for registering
-public key modules, which has to be filled in by the user before it
-can be used to register a module.  It contains the following members:
-
-@table @code
-@item const char *name
-The primary name of this algorithm.
-@item char **aliases
-A list of strings that are `aliases' for the algorithm.  The list
-must be terminated with a NULL element.
-@item const char *elements_pkey
-String containing the one-letter names of the MPI values contained in
-a public key.
-@item const char *element_skey
-String containing the one-letter names of the MPI values contained in
-a secret key.
-@item const char *elements_enc
-String containing the one-letter names of the MPI values that are the
-result of an encryption operation using this algorithm.
-@item const char *elements_sig
-String containing the one-letter names of the MPI values that are the
-result of a sign operation using this algorithm.
-@item const char *elements_grip
-String containing the one-letter names of the MPI values that are to
-be included in the `key grip'.
-@item int use
-The bitwise-OR of the following flags, depending on the abilities of
-the algorithm:
-@table @code
-@item GCRY_PK_USAGE_SIGN
-The algorithm supports signing and verifying of data.
-@item GCRY_PK_USAGE_ENCR
-The algorithm supports the encryption and decryption of data.
-@end table
-@item gcry_pk_generate_t generate
-The function responsible for generating a new key pair.  See below for
-a description of this type.
-@item gcry_pk_check_secret_key_t check_secret_key
-The function responsible for checking the sanity of a provided secret
-key.  See below for a description of this type.
-@item gcry_pk_encrypt_t encrypt
-The function responsible for encrypting data.  See below for a
-description of this type.
-@item gcry_pk_decrypt_t decrypt
-The function responsible for decrypting data.  See below for a
-description of this type.
-@item gcry_pk_sign_t sign
-The function responsible for signing data.  See below for a description
-of this type.
-@item gcry_pk_verify_t verify
-The function responsible for verifying that the provided signature
-matches the provided data.  See below for a description of this type.
-@item gcry_pk_get_nbits_t get_nbits
-The function responsible for returning the number of bits of a provided
-key.  See below for a description of this type.
-@end table
-@end deftp
-
-@deftp {Data type} gcry_pk_generate_t
-Type for the `generate' function, defined as: gcry_err_code_t
-(*gcry_pk_generate_t) (int algo, unsigned int nbits, unsigned long
-use_e, gcry_mpi_t *skey, gcry_mpi_t **retfactors)
-@end deftp
-
-@deftp {Data type} gcry_pk_check_secret_key_t
-Type for the `check_secret_key' function, defined as: gcry_err_code_t
-(*gcry_pk_check_secret_key_t) (int algo, gcry_mpi_t *skey)
-@end deftp
-
-@deftp {Data type} gcry_pk_encrypt_t
-Type for the `encrypt' function, defined as: gcry_err_code_t
-(*gcry_pk_encrypt_t) (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
-gcry_mpi_t *pkey, int flags)
-@end deftp
-
-@deftp {Data type} gcry_pk_decrypt_t
-Type for the `decrypt' function, defined as: gcry_err_code_t
-(*gcry_pk_decrypt_t) (int algo, gcry_mpi_t *result, gcry_mpi_t *data,
-gcry_mpi_t *skey, int flags)
-@end deftp
-
-@deftp {Data type} gcry_pk_sign_t
-Type for the `sign' function, defined as: gcry_err_code_t
-(*gcry_pk_sign_t) (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
-gcry_mpi_t *skey)
-@end deftp
-
-@deftp {Data type} gcry_pk_verify_t
-Type for the `verify' function, defined as: gcry_err_code_t
-(*gcry_pk_verify_t) (int algo, gcry_mpi_t hash, gcry_mpi_t *data,
-gcry_mpi_t *pkey, int (*cmp) (void *, gcry_mpi_t), void *opaquev)
-@end deftp
-
-@deftp {Data type} gcry_pk_get_nbits_t
-Type for the `get_nbits' function, defined as: unsigned
-(*gcry_pk_get_nbits_t) (int algo, gcry_mpi_t *pkey)
-@end deftp
-
-@deftypefun gcry_error_t gcry_pk_register (gcry_pk_spec_t *@var{pubkey}, unsigned int *algorithm_id, gcry_module_t *@var{module})
-
-Register a new public key module whose specification can be found in
-@var{pubkey}.  On success, a new algorithm ID is stored in
-@var{algorithm_id} and a pointer representing this module is stored
-in @var{module}.
-@end deftypefun
-
-@deftypefun void gcry_pk_unregister (gcry_module_t @var{module})
-Unregister the public key module identified by @var{module}, which
-must have been registered with gcry_pk_register.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_pk_list (int *@var{list}, int *@var{list_length})
-Get a list consisting of the IDs of the loaded pubkey modules.  If
-@var{list} is zero, write the number of loaded pubkey modules to
-@var{list_length} and return.  If @var{list} is non-zero, the first
-*@var{list_length} algorithm IDs are stored in @var{list}, which must
-be of according size.  In case there are less pubkey modules than
-*@var{list_length}, *@var{list_length} is updated to the correct
-number.
-@end deftypefun
-
 @node Cryptographic Functions
 @section Cryptographic Functions
 
 @noindent
 Note that we will in future allow to use keys without p,q and u
 specified and may also support other parameters for performance
-reasons. 
+reasons.
 
 @noindent
 
@@ -2211,7 +2114,12 @@ sub-S-expression named `flags'; the following flags are known:
 
 @table @code
 @item pkcs1
-Use PKCS#1 block type 2 padding.
+Use PKCS#1 block type 2 padding for encryption, block type 1 padding
+for signing.
+@item oaep
+Use RSA-OAEP padding for encryption.
+@item pss
+Use RSA-PSS padding for signing.
 @item no-blinding
 Do not use a technique called `blinding', which is used by default in
 order to prevent leaking of secret information.  Blinding is only
@@ -2238,19 +2146,19 @@ operation, like e.g. padding rules.
 If you don't want to let Libgcrypt handle the padding, you must pass an
 appropriate MPI using this expression for @var{data}:
 
-@example 
+@example
 (data
   (flags raw)
   (value @var{mpi}))
 @end example
 
 @noindent
-This has the same semantics as the old style MPI only way.  @var{MPI} is
-the actual data, already padded appropriate for your protocol.  Most
-systems however use PKCS#1 padding and so you can use this S-expression
-for @var{data}:
+This has the same semantics as the old style MPI only way.  @var{MPI}
+is the actual data, already padded appropriate for your protocol.
+Most RSA based systems however use PKCS#1 padding and so you can use
+this S-expression for @var{data}:
 
-@example 
+@example
 (data
   (flags pkcs1)
   (value @var{block}))
@@ -2264,7 +2172,7 @@ function checks that this data actually can be used with the given key,
 does the padding and encrypts it.
 
 If the function could successfully perform the encryption, the return
-value will be 0 and a new S-expression with the encrypted result is
+value will be 0 and a new S-expression with the encrypted result is
 allocated and assigned to the variable at the address of @var{r_ciph}.
 The caller is responsible to release this value using
 @code{gcry_sexp_release}.  In case of an error, an error code is
@@ -2313,8 +2221,17 @@ element:
 @end example
 
 @noindent
-Note that this function currently does not know of any padding
-methods and the caller must do any un-padding on his own.
+This function does not remove padding from the data by default.  To
+let Libgcrypt remove padding, give a hint in `flags' telling which
+padding method was used when encrypting:
+
+@example
+(flags @var{padding-method})
+@end example
+
+@noindent
+Currently @var{padding-method} is either @code{pkcs1} for PKCS#1 block
+type 2 padding, or @code{oaep} for RSA-OAEP padding.
 
 @noindent
 The function returns 0 on success or an error code.  The variable at the
@@ -2345,7 +2262,7 @@ private key @var{skey} and place it into the variable at the address of
 with just one MPI or a modern and more versatile S-expression which
 allows to let Libgcrypt handle padding:
 
-@example 
+@example
  (data
   (flags pkcs1)
   (hash @var{hash-algo} @var{block}))
@@ -2356,9 +2273,9 @@ This example requests to sign the data in @var{block} after applying
 PKCS#1 block type 1 style padding.  @var{hash-algo} is a string with the
 hash algorithm to be encoded into the signature, this may be any hash
 algorithm name as supported by Libgcrypt.  Most likely, this will be
-"sha1", "rmd160" or "md5".  It is obvious that the length of @var{block}
-must match the size of that message digests; the function checks that
-this and other constraints are valid.
+"sha256" or "sha1".  It is obvious that the length of @var{block} must
+match the size of that message digests; the function checks that this
+and other constraints are valid.
 
 @noindent
 If PKCS#1 padding is not required (because the caller does already
@@ -2417,7 +2334,7 @@ the function in @var{sig}.
 
 @noindent
 The result is 0 for success (i.e. the data matches the signature), or an
-error code where the most relevant code is @code{GCRYERR_BAD_SIGNATURE}
+error code where the most relevant code is @code{GCRY_ERR_BAD_SIGNATURE}
 to indicate that the signature does not match the provided data.
 
 @end deftypefun
@@ -2494,9 +2411,9 @@ algorithm. This may be 0 for "don't care" or the bit-wise OR of these
 flags:
 
 @table @code
-@item GCRY_PK_USAGE_SIGN 
+@item GCRY_PK_USAGE_SIGN
 Algorithm is usable for signing.
-@item GCRY_PK_USAGE_ENCR 
+@item GCRY_PK_USAGE_ENCR
 Algorithm is usable for encryption.
 @end table
 
@@ -2552,7 +2469,7 @@ and @var{buflen} must have the value @code{sizeof (int)}.
 @c end gcry_pk_ctl
 
 @noindent
-Libgcrypt also provides a function for generating public key
+Libgcrypt also provides a function to generate public key
 pairs:
 
 @deftypefun gcry_error_t gcry_pk_genkey (@w{gcry_sexp_t *@var{r_key}}, @w{gcry_sexp_t @var{parms}})
@@ -2564,12 +2481,12 @@ an error, @var{r_key} is set to @code{NULL}.  The return code is 0 for
 success or an error code otherwise.
 
 @noindent
-Here is an example for @var{parms} for creating a 1024 bit RSA key:
+Here is an example for @var{parms} to create an 2048 bit RSA key:
 
 @example
 (genkey
   (rsa
-    (nbits 4:1024)))
+    (nbits 4:2048)))
 @end example
 
 @noindent
@@ -2600,10 +2517,12 @@ are special:
 @item 0
 Use a secure and fast value.  This is currently the number 41.
 @item 1
-Use a secure value as required by some specification.  This is currently
+Use a value as required by some crypto policies.  This is currently
 the number 65537.
 @item 2
 Reserved
+@item > 2
+Use the given value.
 @end table
 
 @noindent
@@ -2612,7 +2531,7 @@ If this parameter is not used, Libgcrypt uses for historic reasons
 
 @item qbits
 This is only meanigful for DSA keys.  If it is given the DSA key is
-generated with a Q parameyer of this size.  If it is not given or zero 
+generated with a Q parameyer of this size.  If it is not given or zero
 Q is deduced from NBITS in this way:
 @table @samp
 @item 512 <= N <= 1024
@@ -2631,10 +2550,90 @@ are allowed.  When specifying Q all values of N in the range 512 to
 15680 are valid as long as they are multiples of 8.
 
 @item transient-key
-This is only meaningful for RSA keys.  This is a flag with no value.  If
-given the RSA key is created using a faster and a somewhat less secure
-random number generator.  This flag may be used for keys which are only
-used for a short time and do not require full cryptograohic strength.
+This is only meaningful for RSA, DSA, ECDSA, and ECDH keys.  This is a flag
+with no value.  If given the key is created using a faster and a
+somewhat less secure random number generator.  This flag may be used for
+keys which are only used for a short time or per-message and do not require full
+cryptographic strength.
+
+@item domain
+This is only meaningful for DLP algorithms.  If specified keys are
+generated with domain parameters taken from this list.  The exact
+format of this parameter depends on the actual algorithm.  It is
+currently only implemented for DSA using this format:
+
+@example
+(genkey
+  (dsa
+    (domain
+      (p @var{p-mpi})
+      (q @var{q-mpi})
+      (g @var{q-mpi}))))
+@end example
+
+@code{nbits} and @code{qbits} may not be specified because they are
+derived from the domain parameters.
+
+@item derive-parms
+This is currently only implemented for RSA and DSA keys.  It is not
+allowed to use this together with a @code{domain} specification.  If
+given, it is used to derive the keys using the given parameters.
+
+If given for an RSA key the X9.31 key generation algorithm is used
+even if libgcrypt is not in FIPS mode.  If given for a DSA key, the
+FIPS 186 algorithm is used even if libgcrypt is not in FIPS mode.
+
+@example
+(genkey
+  (rsa
+    (nbits 4:1024)
+    (rsa-use-e 1:3)
+    (derive-parms
+      (Xp1 #1A1916DDB29B4EB7EB6732E128#)
+      (Xp2 #192E8AAC41C576C822D93EA433#)
+      (Xp  #D8CD81F035EC57EFE822955149D3BFF70C53520D
+            769D6D76646C7A792E16EBD89FE6FC5B605A6493
+            39DFC925A86A4C6D150B71B9EEA02D68885F5009
+            B98BD984#)
+      (Xq1 #1A5CF72EE770DE50CB09ACCEA9#)
+      (Xq2 #134E4CAA16D2350A21D775C404#)
+      (Xq  #CC1092495D867E64065DEE3E7955F2EBC7D47A2D
+            7C9953388F97DDDC3E1CA19C35CA659EDC2FC325
+            6D29C2627479C086A699A49C4C9CEE7EF7BD1B34
+            321DE34A#))))
+@end example
+
+@example
+(genkey
+  (dsa
+    (nbits 4:1024)
+    (derive-parms
+      (seed @var{seed-mpi}))))
+@end example
+
+
+@item use-x931
+@cindex X9.31
+Force the use of the ANSI X9.31 key generation algorithm instead of
+the default algorithm. This flag is only meaningful for RSA and
+usually not required.  Note that this algorithm is implicitly used if
+either @code{derive-parms} is given or Libgcrypt is in FIPS mode.
+
+@item use-fips186
+@cindex FIPS 186
+Force the use of the FIPS 186 key generation algorithm instead of the
+default algorithm.  This flag is only meaningful for DSA and usually
+not required.  Note that this algorithm is implicitly used if either
+@code{derive-parms} is given or Libgcrypt is in FIPS mode.  As of now
+FIPS 186-2 is implemented; after the approval of FIPS 186-3 the code
+will be changed to implement 186-3.
+
+
+@item use-fips186-2
+Force the use of the FIPS 186-2 key generation algorithm instead of
+the default algorithm.  This algorithm is slighlty different from
+FIPS 186-3 and allows only 1024 bit keys.  This flag is only meaningful
+for DSA and only required for FIPS testing backward compatibility.
 
 
 @end table
@@ -2662,761 +2661,156 @@ As an example, here is what the Elgamal key generation returns:
       (y @var{y-mpi})
       (x @var{x-mpi})))
   (misc-key-info
-    (pm1-factors @var{n1 n2 ... nn})))
+    (pm1-factors @var{n1 n2 ... nn}))
 @end example
 
 @noindent
-As you can see, some of the information is duplicated, but this provides
-an easy way to extract either the public or the private key.  Note that
-the order of the elements is not defined, e.g. the private key may be
-stored before the public key. @var{n1 n2 ... nn} is a list of prime
-numbers used to composite @var{p-mpi}; this is in general not a very
-useful information.
+As you can see, some of the information is duplicated, but this
+provides an easy way to extract either the public or the private key.
+Note that the order of the elements is not defined, e.g. the private
+key may be stored before the public key. @var{n1 n2 ... nn} is a list
+of prime numbers used to composite @var{p-mpi}; this is in general not
+a very useful information and only available if the key generation
+algorithm provides them.
 @end deftypefun
 @c end gcry_pk_genkey
 
-@node AC Interface
-@section Alternative Public Key Interface
-
-This section documents the alternative interface to asymmetric
-cryptography (ac) that is not based on S-expressions, but on native C
-data structures.  As opposed to the pk interface described in the
-former chapter, this one follows an open/use/close paradigm like other
-building blocks of the library.
+@c **********************************************************
+@c *******************  Hash Functions  *********************
+@c **********************************************************
+@node Hashing
+@chapter Hashing
 
-@strong{This interface has a few known problems; most noteworthy an
-inherent tendency to leak memory.  It might not be available in
-forthcoming versions Libgcrypt.}
+Libgcrypt provides an easy and consistent to use interface for hashing.
+Hashing is buffered and several hash algorithms can be updated at once.
+It is possible to compute a MAC using the same routines.  The
+programming model follows an open/process/close paradigm and is in that
+similar to other building blocks provided by Libgcrypt.
 
+For convenience reasons, a few cyclic redundancy check value operations
+are also supported.
 
 @menu
-* Available asymmetric algorithms::  List of algorithms supported by the library.
-* Working with sets of data::   How to work with sets of data.
-* Working with IO objects::     How to work with IO objects.
-* Working with handles::        How to use handles.
-* Working with keys::           How to work with keys.
-* Using cryptographic functions::  How to perform cryptographic operations.
-* Handle-independent functions::  General functions independent of handles.
+* Available hash algorithms::   List of hash algorithms supported by the library.
+* Working with hash algorithms::  List of functions related to hashing.
 @end menu
 
-@node Available asymmetric algorithms
-@subsection Available asymmetric algorithms
-
-Libgcrypt supports the RSA (Rivest-Shamir-Adleman)
-algorithms as well as DSA (Digital Signature Algorithm) and Elgamal.
-The versatile interface allows to add more algorithms in the future.
-
-@deftp {Data type} gcry_ac_id_t
-
-The following constants are defined for this type:
+@node Available hash algorithms
+@section Available hash algorithms
 
+@c begin table of hash algorithms
+@cindex SHA-1
+@cindex SHA-224, SHA-256, SHA-384, SHA-512
+@cindex RIPE-MD-160
+@cindex MD2, MD4, MD5
+@cindex TIGER, TIGER1, TIGER2
+@cindex HAVAL
+@cindex Whirlpool
+@cindex CRC32
 @table @code
-@item GCRY_AC_RSA
-Rivest-Shamir-Adleman
-@item GCRY_AC_DSA
-Digital Signature Algorithm
-@item GCRY_AC_ELG
-Elgamal
-@item GCRY_AC_ELG_E
-Elgamal, encryption only.
-@end table
-@end deftp
+@item GCRY_MD_NONE
+This is not a real algorithm but used by some functions as an error
+return value.  This constant is guaranteed to have the value @code{0}.
 
-@node Working with sets of data
-@subsection Working with sets of data
+@item GCRY_MD_SHA1
+This is the SHA-1 algorithm which yields a message digest of 20 bytes.
+Note that SHA-1 begins to show some weaknesses and it is suggested to
+fade out its use if strong cryptographic properties are required.
 
-In the context of this interface the term `data set' refers to a list
-of `named MPI values' that is used by functions performing
-cryptographic operations; a named MPI value is a an MPI value,
-associated with a label.
+@item GCRY_MD_RMD160
+This is the 160 bit version of the RIPE message digest (RIPE-MD-160).
+Like SHA-1 it also yields a digest of 20 bytes.  This algorithm share a
+lot of design properties with SHA-1 and thus it is advisable not to use
+it for new protocols.
 
-Such data sets are used for representing keys, since keys simply
-consist of a variable amount of numbers.  Furthermore some functions
-return data sets to the caller that are to be provided to other
-functions.
+@item GCRY_MD_MD5
+This is the well known MD5 algorithm, which yields a message digest of
+16 bytes.  Note that the MD5 algorithm has severe weaknesses, for
+example it is easy to compute two messages yielding the same hash
+(collision attack).  The use of this algorithm is only justified for
+non-cryptographic application.
 
-This section documents the data types, symbols and functions that are
-relevant for working with data sets.
 
-@deftp {Data type} gcry_ac_data_t
-A single data set.
-@end deftp
+@item GCRY_MD_MD4
+This is the MD4 algorithm, which yields a message digest of 16 bytes.
+This algorithms ha severe weaknesses and should not be used.
 
-The following flags are supported:
+@item GCRY_MD_MD2
+This is an reserved identifier for MD-2; there is no implementation yet.
+This algorithm has severe weaknesses and should not be used.
 
-@table @code
-@item GCRY_AC_FLAG_DEALLOC
-Used for storing data in a data set.  If given, the data will be
-released by the library.  Note that whenever one of the ac functions
-is about to release objects because of this flag, the objects are
-expected to be stored in memory allocated through the Libgcrypt memory
-management.  In other words: gcry_free() is used instead of free().
-
-@item GCRY_AC_FLAG_COPY
-Used for storing/retrieving data in/from a data set.  If given, the
-library will create copies of the provided/contained data, which will
-then be given to the user/associated with the data set.
-@end table
+@item GCRY_MD_TIGER
+This is the TIGER/192 algorithm which yields a message digest of 24
+bytes.  Actually this is a variant of TIGER with a different output
+print order as used by GnuPG up to version 1.3.2.
 
-@deftypefun gcry_error_t gcry_ac_data_new (gcry_ac_data_t *@var{data})
-Creates a new, empty data set and stores it in @var{data}.
-@end deftypefun
+@item GCRY_MD_TIGER1
+This is the TIGER variant as used by the NESSIE project.  It uses the
+most commonly used output print order.
 
-@deftypefun void gcry_ac_data_destroy (gcry_ac_data_t @var{data})
-Destroys the data set @var{data}.
-@end deftypefun
+@item GCRY_MD_TIGER2
+This is another variant of TIGER with a different padding scheme.
 
-@deftypefun gcry_error_t gcry_ac_data_set (gcry_ac_data_t @var{data}, unsigned int @var{flags}, char *@var{name}, gcry_mpi_t @var{mpi})
-Add the value @var{mpi} to @var{data} with the label @var{name}.  If
-@var{flags} contains GCRY_AC_FLAG_COPY, the data set will contain
-copies of @var{name} and @var{mpi}.  If @var{flags} contains
-GCRY_AC_FLAG_DEALLOC or GCRY_AC_FLAG_COPY, the values
-contained in the data set will be deallocated when they are to be
-removed from the data set.
-@end deftypefun
 
-@deftypefun gcry_error_t gcry_ac_data_copy (gcry_ac_data_t *@var{data_cp}, gcry_ac_data_t @var{data})
-Create a copy of the data set @var{data} and store it in
-@var{data_cp}.  FIXME: exact semantics undefined.
-@end deftypefun
+@item GCRY_MD_HAVAL
+This is an reserved value for the HAVAL algorithm with 5 passes and 160
+bit. It yields a message digest of 20 bytes.  Note that there is no
+implementation yet available.
 
-@deftypefun unsigned int gcry_ac_data_length (gcry_ac_data_t @var{data})
-Returns the number of named MPI values inside of the data set
-@var{data}.
-@end deftypefun
+@item GCRY_MD_SHA224
+This is the SHA-224 algorithm which yields a message digest of 28 bytes.
+See Change Notice 1 for FIPS 180-2 for the specification.
 
-@deftypefun gcry_error_t gcry_ac_data_get_name (gcry_ac_data_t @var{data}, unsigned int @var{flags}, char *@var{name}, gcry_mpi_t *@var{mpi})
-Store the value labelled with @var{name} found in @var{data} in
-@var{mpi}.  If @var{flags} contains GCRY_AC_FLAG_COPY, store a copy of
-the @var{mpi} value contained in the data set.  @var{mpi} may be NULL
-(this might be useful for checking the existence of an MPI with
-extracting it).
-@end deftypefun
+@item GCRY_MD_SHA256
+This is the SHA-256 algorithm which yields a message digest of 32 bytes.
+See FIPS 180-2 for the specification.
 
-@deftypefun gcry_error_t gcry_ac_data_get_index (gcry_ac_data_t @var{data}, unsigned int flags, unsigned int @var{index}, const char **@var{name}, gcry_mpi_t *@var{mpi})
-Stores in @var{name} and @var{mpi} the named @var{mpi} value contained
-in the data set @var{data} with the index @var{idx}.  If @var{flags}
-contains GCRY_AC_FLAG_COPY, store copies of the values contained in
-the data set. @var{name} or @var{mpi} may be NULL.
-@end deftypefun
+@item GCRY_MD_SHA384
+This is the SHA-384 algorithm which yields a message digest of 48 bytes.
+See FIPS 180-2 for the specification.
 
-@deftypefun void gcry_ac_data_clear (gcry_ac_data_t @var{data})
-Destroys any values contained in the data set @var{data}.
-@end deftypefun
+@item GCRY_MD_SHA512
+This is the SHA-384 algorithm which yields a message digest of 64 bytes.
+See FIPS 180-2 for the specification.
 
-@deftypefun gcry_error_t gcry_ac_data_to_sexp (gcry_ac_data_t @var{data}, gcry_sexp_t *@var{sexp}, const char **@var{identifiers})
-This function converts the data set @var{data} into a newly created
-S-Expression, which is to be stored in @var{sexp}; @var{identifiers}
-is a NULL terminated list of C strings, which specifies the structure
-of the S-Expression.
+@item GCRY_MD_CRC32
+This is the ISO 3309 and ITU-T V.42 cyclic redundancy check.  It yields
+an output of 4 bytes.  Note that this is not a hash algorithm in the
+cryptographic sense.
 
-Example:
+@item GCRY_MD_CRC32_RFC1510
+This is the above cyclic redundancy check function, as modified by RFC
+1510.  It yields an output of 4 bytes.  Note that this is not a hash
+algorithm in the cryptographic sense.
 
-If @var{identifiers} is a list of pointers to the strings ``foo'' and
-``bar'' and if @var{data} is a data set containing the values ``val1 =
-0x01'' and ``val2 = 0x02'', then the resulting S-Expression will look
-like this: (foo (bar ((val1 0x01) (val2 0x02))).
-@end deftypefun
+@item GCRY_MD_CRC24_RFC2440
+This is the OpenPGP cyclic redundancy check function.  It yields an
+output of 3 bytes.  Note that this is not a hash algorithm in the
+cryptographic sense.
 
-@deftypefun gcry_error gcry_ac_data_from_sexp (gcry_ac_data_t *@var{data}, gcry_sexp_t @var{sexp}, const char **@var{identifiers})
-This function converts the S-Expression @var{sexp} into a newly
-created data set, which is to be stored in @var{data};
-@var{identifiers} is a NULL terminated list of C strings, which
-specifies the structure of the S-Expression.  If the list of
-identifiers does not match the structure of the S-Expression, the
-function fails.
-@end deftypefun
+@item GCRY_MD_WHIRLPOOL
+This is the Whirlpool algorithm which yields a message digest of 64
+bytes.
 
-@node Working with IO objects
-@subsection Working with IO objects
+@end table
+@c end table of hash algorithms
 
-Note: IO objects are currently only used in the context of message
-encoding/decoding and encryption/signature schemes.
+@node Working with hash algorithms
+@section Working with hash algorithms
 
-@deftp {Data type} {gcry_ac_io_t}
-@code{gcry_ac_io_t} is the type to be used for IO objects.
-@end deftp
+To use most of these function it is necessary to create a context;
+this is done using:
 
-IO objects provide an uniform IO layer on top of different underlying
-IO mechanisms; either they can be used for providing data to the
-library (mode is GCRY_AC_IO_READABLE) or they can be used for
-retrieving data from the library (mode is GCRY_AC_IO_WRITABLE).
+@deftypefun gcry_error_t gcry_md_open (gcry_md_hd_t *@var{hd}, int @var{algo}, unsigned int @var{flags})
 
-IO object need to be initialized by calling on of the following
-functions:
+Create a message digest object for algorithm @var{algo}.  @var{flags}
+may be given as an bitwise OR of constants described below.  @var{algo}
+may be given as @code{0} if the algorithms to use are later set using
+@code{gcry_md_enable}. @var{hd} is guaranteed to either receive a valid
+handle or NULL.
 
-@deftypefun void gcry_ac_io_init (gcry_ac_io_t *@var{ac_io}, gcry_ac_io_mode_t @var{mode}, gcry_ac_io_type_t @var{type}, ...);
-Initialize @var{ac_io} according to @var{mode}, @var{type} and the
-variable list of arguments.  The list of variable arguments to specify
-depends on the given @var{type}.
-@end deftypefun
-
-@deftypefun void gcry_ac_io_init_va (gcry_ac_io_t *@var{ac_io}, gcry_ac_io_mode_t @var{mode}, gcry_ac_io_type_t @var{type}, va_list @var{ap});
-Initialize @var{ac_io} according to @var{mode}, @var{type} and the
-variable list of arguments @var{ap}.  The list of variable arguments
-to specify depends on the given @var{type}.
-@end deftypefun
-
-The following types of IO objects exist:
-
-@table @code
-@item GCRY_AC_IO_STRING
-In case of GCRY_AC_IO_READABLE the IO object will provide data from a
-memory string.  Arguments to specify at initialization time:
-@table @code
-@item unsigned char *
-Pointer to the beginning of the memory string
-@item size_t
-Size of the memory string
-@end table
-In case of GCRY_AC_IO_WRITABLE the object will store retrieved data in
-a newly allocated memory string.  Arguments to specify at
-initialization time:
-@table @code
-@item unsigned char **
-Pointer to address, at which the pointer to the newly created memory
-string is to be stored
-@item size_t *
-Pointer to address, at which the size of the newly created memory
-string is to be stored
-@end table
-
-@item GCRY_AC_IO_CALLBACK
-In case of GCRY_AC_IO_READABLE the object will forward read requests
-to a provided callback function.  Arguments to specify at
-initialization time:
-@table @code
-@item gcry_ac_data_read_cb_t
-Callback function to use
-@item void *
-Opaque argument to provide to the callback function
-@end table
-In case of GCRY_AC_IO_WRITABLE the object will forward write requests
-to a provided callback function.  Arguments to specify at
-initialization time:
-@table @code
-@item gcry_ac_data_write_cb_t
-Callback function to use
-@item void *
-Opaque argument to provide to the callback function
-@end table
-@end table
-
-@node Working with handles
-@subsection Working with handles
-
-In order to use an algorithm, an according handle must be created.
-This is done using the following function:
-
-@deftypefun gcry_error_t gcry_ac_open (gcry_ac_handle_t *@var{handle}, int @var{algorithm}, int @var{flags})
-
-Creates a new handle for the algorithm @var{algorithm} and stores it
-in @var{handle}.  @var{flags} is not used currently.
-
-@var{algorithm} must be a valid algorithm ID, see @xref{Available
-asymmetric algorithms}, for a list of supported algorithms and the
-according constants.  Besides using the listed constants directly, the
-functions @code{gcry_pk_name_to_id} may be used to convert the textual
-name of an algorithm into the according numeric ID.
-@end deftypefun
-
-@deftypefun void gcry_ac_close (gcry_ac_handle_t @var{handle})
-Destroys the handle @var{handle}.
-@end deftypefun
-
-@node Working with keys
-@subsection Working with keys
-
-@deftp {Data type} gcry_ac_key_type_t
-Defined constants:
-
-@table @code
-@item GCRY_AC_KEY_SECRET
-Specifies a secret key.
-@item GCRY_AC_KEY_PUBLIC
-Specifies a public key.
-@end table
-@end deftp
-
-@deftp {Data type} gcry_ac_key_t
-This type represents a single `key', either a secret one or a public
-one.
-@end deftp
-
-@deftp {Data type} gcry_ac_key_pair_t
-This type represents a `key pair' containing a secret and a public key.
-@end deftp
-
-Key data structures can be created in two different ways; a new key
-pair can be generated, resulting in ready-to-use key.  Alternatively a
-key can be initialized from a given data set.
-
-@deftypefun gcry_error_t gcry_ac_key_init (gcry_ac_key_t *@var{key}, gcry_ac_handle_t @var{handle}, gcry_ac_key_type_t @var{type}, gcry_ac_data_t @var{data})
-Creates a new key of type @var{type}, consisting of the MPI values
-contained in the data set @var{data} and stores it in @var{key}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_key_pair_generate (gcry_ac_handle_t @var{handle}, unsigned int @var{nbits}, void *@var{key_spec}, gcry_ac_key_pair_t *@var{key_pair}, gcry_mpi_t **@var{misc_data})
-
-Generates a new key pair via the handle @var{handle} of @var{NBITS}
-bits and stores it in @var{key_pair}.
-
-In case non-standard settings are wanted, a pointer to a structure of
-type @code{gcry_ac_key_spec_<algorithm>_t}, matching the selected
-algorithm, can be given as @var{key_spec}.  @var{misc_data} is not
-used yet.  Such a structure does only exist for RSA.  A description
-of the members of the supported structures follows.
-
-@table @code
-@item gcry_ac_key_spec_rsa_t
-@table @code
-@item gcry_mpi_t e
-Generate the key pair using a special @code{e}.  The value of @code{e}
-has the following meanings:
-@table @code
-@item = 0
-Let Libgcrypt decide what exponent should be used.
-@item = 1
-Request the use of a ``secure'' exponent; this is required by some
-specification to be 65537.
-@item > 2
-Try starting at this value until a working exponent is found.  Note
-that the current implementation leaks some information about the
-private key because the incrementation used is not randomized.  Thus,
-this function will be changed in the future to return a random
-exponent of the given size.
-@end table
-@end table
-@end table
-
-Example code:
-@example
-@{
-  gcry_ac_key_pair_t key_pair;
-  gcry_ac_key_spec_rsa_t rsa_spec;
-
-  rsa_spec.e = gcry_mpi_new (0);
-  gcry_mpi_set_ui (rsa_spec.e, 1);
-
-  err = gcry_ac_open  (&handle, GCRY_AC_RSA, 0);
-  assert (! err);
-
-  err = gcry_ac_key_pair_generate (handle, 1024, &rsa_spec, &key_pair, NULL);
-  assert (! err);
-@}
-@end example
-@end deftypefun
-
-
-@deftypefun gcry_ac_key_t gcry_ac_key_pair_extract (gcry_ac_key_pair_t @var{key_pair}, gcry_ac_key_type_t @var{which})
-Returns the key of type @var{which} out of the key pair
-@var{key_pair}.
-@end deftypefun
-
-@deftypefun void gcry_ac_key_destroy (gcry_ac_key_t @var{key})
-Destroys the key @var{key}.
-@end deftypefun
-
-@deftypefun void gcry_ac_key_pair_destroy (gcry_ac_key_pair_t @var{key_pair})
-Destroys the key pair @var{key_pair}.
-@end deftypefun
-
-@deftypefun gcry_ac_data_t gcry_ac_key_data_get (gcry_ac_key_t @var{key})
-Returns the data set contained in the key @var{key}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_key_test (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key})
-Verifies that the private key @var{key} is sane via @var{handle}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_key_get_nbits (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key}, unsigned int *@var{nbits})
-Stores the number of bits of the key @var{key} in @var{nbits} via @var{handle}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_key_get_grip (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key}, unsigned char *@var{key_grip})
-Writes the 20 byte long key grip of the key @var{key} to
-@var{key_grip} via @var{handle}.
-@end deftypefun
-
-@node Using cryptographic functions
-@subsection Using cryptographic functions
-
-The following flags might be relevant:
-
-@table @code
-@item GCRY_AC_FLAG_NO_BLINDING
-Disable any blinding, which might be supported by the chosen
-algorithm; blinding is the default.
-@end table
-
-There exist two kinds of cryptographic functions available through the
-ac interface: primitives, and high-level functions.
-
-Primitives deal with MPIs (data sets) directly; what they provide is
-direct access to the cryptographic operations provided by an algorithm
-implementation.
-
-High-level functions deal with octet strings, according to a specified
-``scheme''.  Schemes make use of ``encoding methods'', which are
-responsible for converting the provided octet strings into MPIs, which
-are then forwared to the cryptographic primitives.  Since schemes are
-to be used for a special purpose in order to achieve a particular
-security goal, there exist ``encryption schemes'' and ``signature
-schemes''.  Encoding methods can be used seperately or implicitly
-through schemes.
-
-What follows is a description of the cryptographic primitives.
-
-@deftypefun gcry_error_t gcry_ac_data_encrypt (gcry_ac_handle_t @var{handle}, unsigned int @var{flags}, gcry_ac_key_t @var{key}, gcry_mpi_t @var{data_plain}, gcry_ac_data_t *@var{data_encrypted})
-Encrypts the plain text MPI value @var{data_plain} with the key public
-@var{key} under the control of the flags @var{flags} and stores the
-resulting data set into @var{data_encrypted}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_decrypt (gcry_ac_handle_t @var{handle}, unsigned int @var{flags}, gcry_ac_key_t @var{key}, gcry_mpi_t *@var{data_plain}, gcry_ac_data_t @var{data_encrypted})
-Decrypts the encrypted data contained in the data set
-@var{data_encrypted} with the secret key KEY under the control of the
-flags @var{flags} and stores the resulting plain text MPI value in
-@var{DATA_PLAIN}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_sign (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key}, gcry_mpi_t @var{data}, gcry_ac_data_t *@var{data_signature})
-Signs the data contained in @var{data} with the secret key @var{key}
-and stores the resulting signature in the data set
-@var{data_signature}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_verify (gcry_ac_handle_t @var{handle}, gcry_ac_key_t @var{key}, gcry_mpi_t @var{data}, gcry_ac_data_t @var{data_signature})
-Verifies that the signature contained in the data set
-@var{data_signature} is indeed the result of signing the data
-contained in @var{data} with the secret key belonging to the public
-key @var{key}.
-@end deftypefun
-
-What follows is a description of the high-level functions.
-
-The type ``gcry_ac_em_t'' is used for specifying encoding methods; the
-following methods are supported:
-
-@table @code
-@item GCRY_AC_EME_PKCS_V1_5
-PKCS-V1_5 Encoding Method for Encryption.  Options must be provided
-through a pointer to a correctly initialized object of type
-gcry_ac_eme_pkcs_v1_5_t.
-
-@item GCRY_AC_EMSA_PKCS_V1_5
-PKCS-V1_5 Encoding Method for Signatures with Appendix.  Options must
-be provided through a pointer to a correctly initialized object of
-type gcry_ac_emsa_pkcs_v1_5_t.
-@end table
-
-Option structure types:
-
-@table @code
-@item gcry_ac_eme_pkcs_v1_5_t
-@table @code
-@item gcry_ac_key_t key
-@item gcry_ac_handle_t handle
-@end table
-@item gcry_ac_emsa_pkcs_v1_5_t
-@table @code
-@item gcry_md_algo_t md
-@item size_t em_n
-@end table
-@end table
-
-Encoding methods can be used directly through the following functions:
-
-@deftypefun gcry_error_t gcry_ac_data_encode (gcry_ac_em_t @var{method}, unsigned int @var{flags}, void *@var{options}, unsigned char *@var{m}, size_t @var{m_n}, unsigned char **@var{em}, size_t *@var{em_n})
-Encodes the message contained in @var{m} of size @var{m_n} according
-to @var{method}, @var{flags} and @var{options}.  The newly created
-encoded message is stored in @var{em} and @var{em_n}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_decode (gcry_ac_em_t @var{method}, unsigned int @var{flags}, void *@var{options}, unsigned char *@var{em}, size_t @var{em_n}, unsigned char **@var{m}, size_t *@var{m_n})
-Decodes the message contained in @var{em} of size @var{em_n} according
-to @var{method}, @var{flags} and @var{options}.  The newly created
-decoded message is stored in @var{m} and @var{m_n}.
-@end deftypefun
-
-The type ``gcry_ac_scheme_t'' is used for specifying schemes; the
-following schemes are supported:
-
-@table @code
-@item GCRY_AC_ES_PKCS_V1_5
-PKCS-V1_5 Encryption Scheme.  No options can be provided.
-@item GCRY_AC_SSA_PKCS_V1_5
-PKCS-V1_5 Signature Scheme (with Appendix).  Options can be provided
-through a pointer to a correctly initialized object of type
-gcry_ac_ssa_pkcs_v1_5_t.
-@end table
-
-Option structure types:
-
-@table @code
-@item gcry_ac_ssa_pkcs_v1_5_t
-@table @code
-@item gcry_md_algo_t md
-@end table
-@end table
-
-The functions implementing schemes:
-
-@deftypefun gcry_error_t gcry_ac_data_encrypt_scheme (gcry_ac_handle_t @var{handle}, gcry_ac_scheme_t @var{scheme}, unsigned int @var{flags}, void *@var{opts}, gcry_ac_key_t @var{key}, gcry_ac_io_t *@var{io_message}, gcry_ac_io_t *@var{io_cipher})
-Encrypts the plain text readable from @var{io_message} through
-@var{handle} with the public key @var{key} according to @var{scheme},
-@var{flags} and @var{opts}.  If @var{opts} is not NULL, it has to be a
-pointer to a structure specific to the chosen scheme (gcry_ac_es_*_t).
-The encrypted message is written to @var{io_cipher}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_decrypt_scheme (gcry_ac_handle_t @var{handle}, gcry_ac_scheme_t @var{scheme}, unsigned int @var{flags}, void *@var{opts}, gcry_ac_key_t @var{key}, gcry_ac_io_t *@var{io_cipher}, gcry_ac_io_t *@var{io_message})
-Decrypts the cipher text readable from @var{io_cipher} through
-@var{handle} with the secret key @var{key} according to @var{scheme},
-@var{flags} and @var{opts}.  If @var{opts} is not NULL, it has to be a
-pointer to a structure specific to the chosen scheme (gcry_ac_es_*_t).
-The decrypted message is written to @var{io_message}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_sign_scheme (gcry_ac_handle_t @var{handle}, gcry_ac_scheme_t @var{scheme}, unsigned int @var{flags}, void *@var{opts}, gcry_ac_key_t @var{key}, gcry_ac_io_t *@var{io_message}, gcry_ac_io_t *@var{io_signature})
-Signs the message readable from @var{io_message} through @var{handle}
-with the secret key @var{key} according to @var{scheme}, @var{flags}
-and @var{opts}.  If @var{opts} is not NULL, it has to be a pointer to
-a structure specific to the chosen scheme (gcry_ac_ssa_*_t).  The
-signature is written to @var{io_signature}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_data_verify_scheme (gcry_ac_handle_t @var{handle}, gcry_ac_scheme_t @var{scheme}, unsigned int @var{flags}, void *@var{opts}, gcry_ac_key_t @var{key}, gcry_ac_io_t *@var{io_message}, gcry_ac_io_t *@var{io_signature})
-Verifies through @var{handle} that the signature readable from
-@var{io_signature} is indeed the result of signing the message
-readable from @var{io_message} with the secret key belonging to the
-public key @var{key} according to @var{scheme} and @var{opts}.  If
-@var{opts} is not NULL, it has to be an anonymous structure
-(gcry_ac_ssa_*_t) specific to the chosen scheme.
-@end deftypefun
-
-@node Handle-independent functions
-@subsection Handle-independent functions
-
-These two functions are deprecated; do not use them for new code.
-
-@deftypefun gcry_error_t gcry_ac_id_to_name (gcry_ac_id_t @var{algorithm}, const char **@var{name})
-Stores the textual representation of the algorithm whose id is given
-in @var{algorithm} in @var{name}.  Deprecated; use @code{gcry_pk_algo_name}.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_ac_name_to_id (const char *@var{name}, gcry_ac_id_t *@var{algorithm})
-Stores the numeric ID of the algorithm whose textual representation is
-contained in @var{name} in @var{algorithm}. Deprecated; use
-@code{gcry_pk_map_name}.
-@end deftypefun
-
-@c **********************************************************
-@c *******************  Hash Functions  *********************
-@c **********************************************************
-@node Hashing
-@chapter Hashing
-
-Libgcrypt provides an easy and consistent to use interface for hashing.
-Hashing is buffered and several hash algorithms can be updated at once.
-It is possible to compute a MAC using the same routines.  The
-programming model follows an open/process/close paradigm and is in that
-similar to other building blocks provided by Libgcrypt.
-
-For convenience reasons, a few cyclic redundancy check value operations
-are also supported.
-
-@menu
-* Available hash algorithms::   List of hash algorithms supported by the library.
-* Hash algorithm modules::      How to work with hash algorithm modules.
-* Working with hash algorithms::  List of functions related to hashing.
-@end menu
-
-@node Available hash algorithms
-@section Available hash algorithms
-
-@c begin table of hash algorithms
-@table @code
-@item GCRY_MD_NONE
-This is not a real algorithm but used by some functions as an error
-return value.  This constant is guaranteed to have the value @code{0}.
-
-@item GCRY_MD_SHA1
-This is the SHA-1 algorithm which yields a message digest of 20 bytes.
-
-@item GCRY_MD_RMD160
-This is the 160 bit version of the RIPE message digest (RIPE-MD-160).
-Like SHA-1 it also yields a digest of 20 bytes.
-
-@item GCRY_MD_MD5
-This is the well known MD5 algorithm, which yields a message digest of
-16 bytes. 
-
-@item GCRY_MD_MD4
-This is the MD4 algorithm, which yields a message digest of 16 bytes.
-
-@item GCRY_MD_MD2
-This is an reserved identifier for MD-2; there is no implementation yet.
-
-@item GCRY_MD_TIGER
-This is the TIGER/192 algorithm which yields a message digest of 24 bytes.
-
-@item GCRY_MD_HAVAL
-This is an reserved for the HAVAL algorithm with 5 passes and 160
-bit. It yields a message digest of 20 bytes.  Note that there is no
-implementation yet available.
-
-@item GCRY_MD_SHA224
-This is the SHA-224 algorithm which yields a message digest of 28 bytes.
-See Change Notice 1 for FIPS 180-2 for the specification.
-
-@item GCRY_MD_SHA256
-This is the SHA-256 algorithm which yields a message digest of 32 bytes.
-See FIPS 180-2 for the specification.
-
-@item GCRY_MD_SHA384
-This is the SHA-384 algorithm which yields a message digest of 48 bytes.
-See FIPS 180-2 for the specification.
-
-@item GCRY_MD_SHA512
-This is the SHA-384 algorithm which yields a message digest of 64 bytes.
-See FIPS 180-2 for the specification.
-
-@item GCRY_MD_CRC32
-This is the ISO 3309 and ITU-T V.42 cyclic redundancy check.  It
-yields an output of 4 bytes.
-
-@item GCRY_MD_CRC32_RFC1510
-This is the above cyclic redundancy check function, as modified by RFC
-1510.  It yields an output of 4 bytes.
-
-@item GCRY_MD_CRC24_RFC2440
-This is the OpenPGP cyclic redundancy check function.  It yields an
-output of 3 bytes.
-
-@item GCRY_MD_WHIRLPOOL
-This is the Whirlpool algorithm which yields a message digest of 64
-bytes.
-
-@end table
-@c end table of hash algorithms
-
-@node Hash algorithm modules
-@section Hash algorithm modules
-
-Libgcrypt makes it possible to load additional `message
-digest modules'; these digests can be used just like the message digest
-algorithms that are built into the library directly.  For an
-introduction into extension modules, see @xref{Modules}.
-
-@deftp {Data type} gcry_md_spec_t
-This is the `module specification structure' needed for registering
-message digest modules, which has to be filled in by the user before
-it can be used to register a module.  It contains the following
-members:
-
-@table @code
-@item const char *name
-The primary name of this algorithm.
-@item unsigned char *asnoid
-Array of bytes that form the ASN OID.
-@item int asnlen
-Length of bytes in `asnoid'.
-@item gcry_md_oid_spec_t *oids
-A list of OIDs that are to be associated with the algorithm.  The
-list's last element must have it's `oid' member set to NULL.  See
-below for an explanation of this type.  See below for an explanation
-of this type.
-@item int mdlen
-Length of the message digest algorithm.  See below for an explanation
-of this type.
-@item gcry_md_init_t init
-The function responsible for initializing a handle.  See below for an
-explanation of this type.
-@item gcry_md_write_t write
-The function responsible for writing data into a message digest
-context.  See below for an explanation of this type.
-@item gcry_md_final_t final
-The function responsible for `finalizing' a message digest context.
-See below for an explanation of this type.
-@item gcry_md_read_t read
-The function responsible for reading out a message digest result.  See
-below for an explanation of this type.
-@item size_t contextsize
-The size of the algorithm-specific `context', that should be
-allocated for each handle.
-@end table
-@end deftp
-
-@deftp {Data type} gcry_md_oid_spec_t
-This type is used for associating a user-provided algorithm
-implementation with certain OIDs.  It contains the following members:
-
-@table @code
-@item const char *oidstring
-Textual representation of the OID.
-@end table
-@end deftp
-
-@deftp {Data type} gcry_md_init_t
-Type for the `init' function, defined as: void (*gcry_md_init_t) (void
-*c)
-@end deftp
-
-@deftp {Data type} gcry_md_write_t
-Type for the `write' function, defined as: void (*gcry_md_write_t)
-(void *c, unsigned char *buf, size_t nbytes)
-@end deftp
-
-@deftp {Data type} gcry_md_final_t
-Type for the `final' function, defined as: void (*gcry_md_final_t)
-(void *c)
-@end deftp
-
-@deftp {Data type} gcry_md_read_t
-Type for the `read' function, defined as: unsigned char
-*(*gcry_md_read_t) (void *c)
-@end deftp
-
-@deftypefun gcry_error_t gcry_md_register (gcry_md_spec_t *@var{digest}, unsigned int *algorithm_id, gcry_module_t *@var{module})
-
-Register a new digest module whose specification can be found in
-@var{digest}.  On success, a new algorithm ID is stored in
-@var{algorithm_id} and a pointer representing this module is stored
-in @var{module}.
-@end deftypefun
-
-@deftypefun void gcry_md_unregister (gcry_module_t @var{module})
-Unregister the digest identified by @var{module}, which must have been
-registered with gcry_md_register.
-@end deftypefun
-
-@deftypefun gcry_error_t gcry_md_list (int *@var{list}, int *@var{list_length})
-Get a list consisting of the IDs of the loaded message digest modules.
-If @var{list} is zero, write the number of loaded message digest
-modules to @var{list_length} and return.  If @var{list} is non-zero,
-the first *@var{list_length} algorithm IDs are stored in @var{list},
-which must be of according size.  In case there are less message
-digests modules than *@var{list_length}, *@var{list_length} is updated
-to the correct number.
-@end deftypefun
-
-@node Working with hash algorithms
-@section Working with hash algorithms
-
-To use most of these function it is necessary to create a context;
-this is done using:
-
-@deftypefun gcry_error_t gcry_md_open (gcry_md_hd_t *@var{hd}, int @var{algo}, unsigned int @var{flags})
-
-Create a message digest object for algorithm @var{algo}.  @var{flags}
-may be given as an bitwise OR of constants described below.  @var{algo}
-may be given as @code{0} if the algorithms to use are later set using
-@code{gcry_md_enable}. @var{hd} is guaranteed to either receive a valid
-handle or NULL.
-
-For a list of supported algorithms, see @xref{Available hash
-algorithms}.
+For a list of supported algorithms, see @xref{Available hash
+algorithms}.
 
 The flags allowed for @var{mode} are:
 
@@ -3427,11 +2821,13 @@ Allocate all buffers and the resulting digest in "secure memory".  Use
 this is the hashed data is highly confidential.
 
 @item GCRY_MD_FLAG_HMAC
+@cindex HMAC
 Turn the algorithm into a HMAC message authentication algorithm.  This
-only works if just one algorithm is enabled for the handle.  Note that the function
-@code{gcry_md_setkey} must be used to set the MAC key.  If you want CBC
-message authentication codes based on a cipher, see @xref{Working with
-cipher handles}.
+only works if just one algorithm is enabled for the handle.  Note that
+the function @code{gcry_md_setkey} must be used to set the MAC key.
+The size of the MAC is equal to the message digest of the underlying
+hash algorithm.  If you want CBC message authentication codes based on
+a cipher, see @xref{Working with cipher handles}.
 
 @end table
 @c begin table of hash flags
@@ -3457,8 +2853,9 @@ be set using the function:
 
 @deftypefun gcry_error_t gcry_md_setkey (gcry_md_hd_t @var{h}, const void *@var{key}, size_t @var{keylen})
 
-For use with the HMAC feature, set the MAC key to the value of @var{key}
-of length @var{keylen}.
+For use with the HMAC feature, set the MAC key to the value of
+@var{key} of length @var{keylen} bytes.  There is no restriction on
+the length of the key.
 @end deftypefun
 
 
@@ -3469,7 +2866,9 @@ resources by using:
 
 Release all resources of hash context @var{h}.  @var{h} should not be
 used after a call to this function.  A @code{NULL} passed as @var{h} is
-ignored.
+ignored.  The function also zeroises all sensitive information
+associated with this handle.
+
 
 @end deftypefun
 
@@ -3516,7 +2915,7 @@ function should be used for large blocks of data.
 
 Pass the byte in @var{c} to the digest object with handle @var{h} to
 update the digest value.  This is an efficient function, implemented as
-a macro to buffer the data before an actual update. 
+a macro to buffer the data before an actual update.
 @end deftypefun
 
 The semantics of the hash functions do not provide for reading out intermediate
@@ -3536,7 +2935,7 @@ has an effect. It is implemented as a macro.
 The way to read out the calculated message digest is by using the
 function:
 
-@deftypefun unsigned char *gcry_md_read (gcry_md_hd_t @var{h}, int @var{algo})
+@deftypefun {unsigned char *} gcry_md_read (gcry_md_hd_t @var{h}, int @var{algo})
 
 @code{gcry_md_read} returns the message digest after finalizing the
 calculation.  This function may be used as often as required but it will
@@ -3550,7 +2949,7 @@ been enabled.
 @end deftypefun
 
 Because it is often necessary to get the message digest of one block of
-memory, a fast convenience function is available for this task: 
+memory, a fast convenience function is available for this task:
 
 @deftypefun void gcry_md_hash_buffer (int @var{algo}, void *@var{digest}, const void *@var{buffer}, size_t @var{length});
 
@@ -3575,7 +2974,7 @@ Hash algorithms are identified by internal algorithm numbers (see
 used by names, so two functions are available to map between string
 representations and hash algorithm identifiers.
 
-@deftypefun const char *gcry_md_algo_name (int @var{algo})
+@deftypefun {const char *} gcry_md_algo_name (int @var{algo})
 
 Map the digest algorithm id @var{algo} to a string representation of the
 algorithm name.  For unknown algorithms this function returns the
@@ -3611,7 +3010,7 @@ returns 0 on success.
 To test whether an algorithm is actually available for use, the
 following macro should be used:
 
-@deftypefun gcry_error_t gcry_md_test_algo (int @var{algo}) 
+@deftypefun gcry_error_t gcry_md_test_algo (int @var{algo})
 
 The macro returns 0 if the algorithm @var{algo} is available for use.
 @end deftypefun
@@ -3619,7 +3018,7 @@ The macro returns 0 if the algorithm @var{algo} is available for use.
 If the length of a message digest is not known, it can be retrieved
 using the following function:
 
-@deftypefun unsigned int gcry_md_get_algo_dlen (int @var{algo})
+@deftypefun {unsigned int} gcry_md_get_algo_dlen (int @var{algo})
 
 Retrieve the length in bytes of the digest yielded by algorithm
 @var{algo}.  This is often used prior to @code{gcry_md_read} to allocate
@@ -3688,9 +3087,68 @@ file is the raw data as passed to @code{gcry_md_write} or
 
 @deftypefun void gcry_md_stop_debug (gcry_md_hd_t @var{h}, int @var{reserved})
 
-Stop debugging on handle @var{h}.  @var{reserved} should be specified as
-0.  This function is usually not required because @code{gcry_md_close}
-does implicitly stop debugging.
+Stop debugging on handle @var{h}.  @var{reserved} should be specified as
+0.  This function is usually not required because @code{gcry_md_close}
+does implicitly stop debugging.
+@end deftypefun
+
+
+@c *******************************************************
+@c *******************  KDF  *****************************
+@c *******************************************************
+@node Key Derivation
+@chapter Key Derivation
+
+@acronym{Libgcypt} provides a general purpose function to derive keys
+from strings.
+
+@deftypefun gpg_error_t gcry_kdf_derive ( @
+            @w{const void *@var{passphrase}}, @w{size_t @var{passphraselen}}, @
+            @w{int @var{algo}}, @w{int @var{subalgo}}, @
+            @w{const void *@var{salt}}, @w{size_t @var{saltlen}}, @
+            @w{unsigned long @var{iterations}}, @
+            @w{size_t @var{keysize}}, @w{void *@var{keybuffer}} )
+
+
+Derive a key from a passphrase.  @var{keysize} gives the requested
+size of the keys in octets.  @var{keybuffer} is a caller provided
+buffer filled on success with the derived key.  The input passphrase
+is taken from @var{passphrase} which is an arbitrary memory buffer of
+@var{passphraselen} octets.  @var{algo} specifies the KDF algorithm to
+use; see below.  @var{subalgo} specifies an algorithm used internally
+by the KDF algorithms; this is usually a hash algorithm but certain
+KDF algorithms may use it differently.  @var{salt} is a salt of length
+@var{saltlen} octets, as needed by most KDF algorithms.
+@var{iterations} is a positive integer parameter to most KDFs.
+
+@noindent
+On success 0 is returned; on failure an error code.
+
+@noindent
+Currently supported KDFs (parameter @var{algo}):
+
+@table @code
+@item GCRY_KDF_SIMPLE_S2K
+The OpenPGP simple S2K algorithm (cf. RFC4880).  Its use is strongly
+deprecated.  @var{salt} and @var{iterations} are not needed and may be
+passed as @code{NULL}/@code{0}.
+
+@item GCRY_KDF_SALTED_S2K
+The OpenPGP salted S2K algorithm (cf. RFC4880).  Usually not used.
+@var{iterations} is not needed and may be passed as @code{0}.  @var{saltlen}
+must be given as 8.
+
+@item GCRY_KDF_ITERSALTED_S2K
+The OpenPGP iterated+salted S2K algorithm (cf. RFC4880).  This is the
+default for most OpenPGP applications.  @var{saltlen} must be given as
+8.  Note that OpenPGP defines a special encoding of the
+@var{iterations}; however this function takes the plain decoded
+iteration count.
+
+@item GCRY_KDF_PBKDF2
+The PKCS#5 Passphrase Based Key Derivation Function number 2.
+
+@end table
 @end deftypefun
 
 
@@ -3710,19 +3168,19 @@ does implicitly stop debugging.
 
 @acronym{Libgcypt} offers random numbers of different quality levels:
 
-@deftp {Data type} enum gcry_random_level
-The constants for the random quality levels are of this type.
+@deftp {Data type} gcry_random_level_t
+The constants for the random quality levels are of this enum type.
 @end deftp
 
 @table @code
 @item GCRY_WEAK_RANDOM
 For all functions, except for @code{gcry_mpi_randomize}, this level maps
-to GCRY_STRONG_RANDOM. IF you do not want this, consider using
+to GCRY_STRONG_RANDOM.  If you do not want this, consider using
 @code{gcry_create_nonce}.
 @item GCRY_STRONG_RANDOM
-Use this level for e.g. session keys and similar purposes.
+Use this level for session keys and similar purposes.
 @item GCRY_VERY_STRONG_RANDOM
-Use this level for e.g. key material.
+Use this level for long term key material.
 @end table
 
 @node Retrieving random numbers
@@ -3734,14 +3192,14 @@ Fill @var{buffer} with @var{length} random bytes using a random quality
 as defined by @var{level}.
 @end deftypefun
 
-@deftypefun void * gcry_random_bytes (size_t @var{nbytes}, enum gcry_random_level @var{level})
+@deftypefun {void *} gcry_random_bytes (size_t @var{nbytes}, enum gcry_random_level @var{level})
 
 Convenience function to allocate a memory block consisting of
 @var{nbytes} fresh random bytes using a random quality as defined by
 @var{level}.
 @end deftypefun
 
-@deftypefun void * gcry_random_bytes_secure (size_t @var{nbytes}, enum gcry_random_level @var{level})
+@deftypefun {void *} gcry_random_bytes_secure (size_t @var{nbytes}, enum gcry_random_level @var{level})
 
 Convenience function to allocate a memory block consisting of
 @var{nbytes} fresh random bytes using a random quality as defined by
@@ -3803,7 +3261,7 @@ the external formats:
 
 This is the generic function to create an new S-expression object from
 its external representation in @var{buffer} of @var{length} bytes.  On
-success the result is stored at the address given by @var{r_sexp}. 
+success the result is stored at the address given by @var{r_sexp}.
 With @var{autodetect} set to 0, the data in @var{buffer} is expected to
 be in canonized format, with @var{autodetect} set to 1 the parses any of
 the defined external formats.  If @var{buffer} does not hold a valid
@@ -3845,18 +3303,31 @@ expects arguments for some of these escape sequences right after
 @table @samp
 @item %m
 The next argument is expected to be of type @code{gcry_mpi_t} and a copy of
-its value is inserted into the resulting S-expression.
+its value is inserted into the resulting S-expression.  The MPI is
+stored as a signed integer.
+@item %M
+The next argument is expected to be of type @code{gcry_mpi_t} and a copy of
+its value is inserted into the resulting S-expression.  The MPI is
+stored as an unsigned integer.
 @item %s
 The next argument is expected to be of type @code{char *} and that
 string is inserted into the resulting S-expression.
 @item %d
 The next argument is expected to be of type @code{int} and its value is
 inserted into the resulting S-expression.
+@item %u
+The next argument is expected to be of type @code{unsigned int} and
+its value is inserted into the resulting S-expression.
 @item %b
 The next argument is expected to be of type @code{int} directly
 followed by an argument of type @code{char *}.  This represents a
-buffer of given length to be inserted into the resulting regular
-expression.
+buffer of given length to be inserted into the resulting S-expression.
+@item %S
+The next argument is expected to be of type @code{gcry_sexp_t} and a
+copy of that S-expression is embedded in the resulting S-expression.
+The argument needs to be a regular S-expression, starting with a
+parenthesis.
+
 @end table
 
 @noindent
@@ -3867,7 +3338,10 @@ sign is not a valid character in an S-expression.
 
 @deftypefun void gcry_sexp_release (@w{gcry_sexp_t @var{sexp}})
 
-Release the S-expression object @var{sexp}.
+Release the S-expression object @var{sexp}.  If the S-expression is
+stored in secure memory it explicitly zeroises that memory; note that
+this is done in addition to the zeroisation always done when freeing
+secure memory.
 @end deftypefun
 
 
@@ -3928,8 +3402,7 @@ passed as @code{NULL}.
 
 
 @noindent
-There are a couple of functions to parse S-expressions and retrieve
-elements:
+There are functions to parse S-expressions and retrieve elements:
 
 @deftypefun gcry_sexp_t gcry_sexp_find_token (@w{const gcry_sexp_t @var{list}}, @w{const char *@var{token}}, @w{size_t @var{toklen}})
 
@@ -3994,7 +3467,7 @@ printf ("my name is %.*s\n", (int)len, name);
 @end example
 @end deftypefun
 
-@deftypefun char *gcry_sexp_nth_string (@w{gcry_sexp_t @var{list}}, @w{int @var{number}})
+@deftypefun {char *} gcry_sexp_nth_string (@w{gcry_sexp_t @var{list}}, @w{int @var{number}})
 
 This function is used to get and convert data from a @var{list}. The
 data is assumed to be a Nul terminated string.  The caller must
@@ -4010,7 +3483,9 @@ data is assumed to be an MPI stored in the format described by
 @var{mpifmt} and returned as a standard Libgcrypt MPI.  The caller must
 release this returned value using @code{gcry_mpi_release}.  If there is
 no data at the given index, the index represents a list or the value
-can't be converted to an MPI, @code{NULL} is returned.
+can't be converted to an MPI, @code{NULL} is returned.  If you use
+this function to parse results of a public key function, you most
+likely want to use @code{GCRYMPI_FMT_USG}.
 @end deftypefun
 
 
@@ -4033,22 +3508,15 @@ can't be converted to an MPI, @code{NULL} is returned.
 Public key cryptography is based on mathematics with large numbers.  To
 implement the public key functions, a library for handling these large
 numbers is required.  Because of the general usefulness of such a
-library, its interface is exposed by Libgcrypt.  The implementation is
-based on an old release of GNU Multi-Precision Library (GMP) but in the
-meantime heavily modified and stripped down to what is required for
-cryptography. For a lot of CPUs, high performance assembler
-implementations of some very low level functions are used to gain much
-better performance than with the standard C implementation.
-
-@noindent
+library, its interface is exposed by Libgcrypt.
 In the context of Libgcrypt and in most other applications, these large
 numbers are called MPIs (multi-precision-integers).
 
 @node Data types
 @section Data types
 
-@deftp {Data type} gcry_mpi_t
-The @code{gcry_mpi_t} type represents an object to hold an MPI.
+@deftp {Data type} {gcry_mpi_t}
+This type represents an object to hold an MPI.
 @end deftp
 
 @node Basic functions
@@ -4262,7 +3730,7 @@ as @code{NULL}.  @var{round} should be negative or 0.
 
 @deftypefun int gcry_mpi_gcd (@w{gcry_mpi_t @var{g}}, @w{gcry_mpi_t @var{a}}, @w{gcry_mpi_t @var{b}})
 
-Set @var{g} to the greatest common divisor of @var{a} and @var{b}.  
+Set @var{g} to the greatest common divisor of @var{a} and @var{b}.
 Return true if the @var{g} is 1.
 @end deftypefun
 
@@ -4284,7 +3752,10 @@ The next 2 functions are used to compare MPIs:
 
 Compare the multi-precision-integers number @var{u} and @var{v}
 returning 0 for equality, a positive value for @var{u} > @var{v} and a
-negative for @var{u} < @var{v}.
+negative for @var{u} < @var{v}.  If both numbers are opaque values
+(cf, gcry_mpi_set_opaque) the comparison is done by checking the bit
+sizes using memcmp.  If only one number is an opaque value, the opaque
+value is less than the other number.
 @end deftypefun
 
 @deftypefun int gcry_mpi_cmp_ui (@w{const gcry_mpi_t @var{u}}, @w{unsigned long @var{v}})
@@ -4338,6 +3809,12 @@ Shift the value of @var{a} by @var{n} bits to the right and store the
 result in @var{x}.
 @end deftypefun
 
+@deftypefun void gcry_mpi_lshift (@w{gcry_mpi_t @var{x}}, @w{gcry_mpi_t @var{a}}, @w{unsigned int @var{n}})
+
+Shift the value of @var{a} by @var{n} bits to the left and store the
+result in @var{x}.
+@end deftypefun
+
 @node Miscellaneous
 @section Miscellaneous
 
@@ -4414,8 +3891,7 @@ holding the prime factors and store it in @var{factors}.  @var{flags}
 might be used to influence the prime number generation process.
 @end deftypefun
 
-@deftypefun gcry_prime_group_generator (gcry_mpi_t *@var{r_g},
-gcry_mpi_t @var{prime}, gcry_mpi_t *@var{factors}, gcry_mpi_t @var{start_g})
+@deftypefun gcry_error_t gcry_prime_group_generator (gcry_mpi_t *@var{r_g}, gcry_mpi_t @var{prime}, gcry_mpi_t *@var{factors}, gcry_mpi_t @var{start_g})
 
 Find a generator for @var{prime} where the factorization of
 (@var{prime}-1) is in the @code{NULL} terminated array @var{factors}.
@@ -4452,30 +3928,30 @@ wrong.
 @node Memory allocation
 @section Memory allocation
 
-@deftypefun void *gcry_malloc (size_t @var{n})
+@deftypefun {void *} gcry_malloc (size_t @var{n})
 
 This function tries to allocate @var{n} bytes of memory.  On success
 it returns a pointer to the memory area, in an out-of-core condition,
 it returns NULL.
 @end deftypefun
 
-@deftypefun void *gcry_malloc_secure (size_t @var{n})
+@deftypefun {void *} gcry_malloc_secure (size_t @var{n})
 Like @code{gcry_malloc}, but uses secure memory.
 @end deftypefun
 
-@deftypefun void *gcry_calloc (size_t @var{n})
+@deftypefun {void *} gcry_calloc (size_t @var{n}, size_t @var{m})
 
-This function tries to allocate @var{n} bytes of cleared memory
-(i.e. memory that is initialized with zero bytes).  On success it
-returns a pointer to the memory area, in an out-of-core condition, it
-returns NULL.
+This function allocates a cleared block of memory (i.e. initialized with
+zero bytes) long enough to contain a vector of @var{n} elements, each of
+size @var{m} bytes.  On success it returns a pointer to the memory
+block; in an out-of-core condition, it returns NULL.
 @end deftypefun
 
-@deftypefun void *gcry_calloc_secure (size_t @var{n})
+@deftypefun {void *} gcry_calloc_secure (size_t @var{n}, size_t @var{m})
 Like @code{gcry_calloc}, but uses secure memory.
 @end deftypefun
 
-@deftypefun void *gcry_realloc (void *@var{p}, size_t @var{n})
+@deftypefun {void *} gcry_realloc (void *@var{p}, size_t @var{n})
 
 This function tries to resize the memory area pointed to by @var{p} to
 @var{n} bytes.  On success it returns a pointer to the new memory
@@ -4489,6 +3965,75 @@ Release the memory area pointed to by @var{p}.
 @end deftypefun
 
 @c **********************************************************
+@c *********************  Tools  ****************************
+@c **********************************************************
+@node Tools
+@chapter Tools
+
+@menu
+* hmac256:: A standalone HMAC-SHA-256 implementation
+@end menu
+
+@manpage hmac256.1
+@node hmac256
+@section A HMAC-SHA-256 tool
+@ifset manverb
+.B hmac256
+\- Compute an HMAC-SHA-256 MAC
+@end ifset
+
+@mansect synopsis
+@ifset manverb
+.B  hmac256
+.RB [ \-\-binary ]
+.I key
+.I [FILENAME]
+@end ifset
+
+@mansect description
+This is a standalone HMAC-SHA-256 implementation used to compute an
+HMAC-SHA-256 message authentication code.  The tool has originally
+been developed as a second implementation for Libgcrypt to allow
+comparing against the primary implementation and to be used for
+internal consistency checks.  It should not be used for sensitive data
+because no mechanisms to clear the stack etc are used.
+
+The code has been written in a highly portable manner and requires
+only a few standard definitions to be provided in a config.h file.
+
+@noindent
+@command{hmac256} is commonly invoked as
+
+@example
+hmac256 "This is my key" foo.txt
+@end example
+
+@noindent
+This compute the MAC on the file @file{foo.txt} using the key given on
+the command line.
+
+@mansect options
+@noindent
+@command{hmac256} understands these options:
+
+@table @gnupgtabopt
+
+@item --binary
+Print the MAC as a binary string.  The default is to print the MAC
+encoded has lower case hex digits.
+
+@item --version
+Print version of the program and exit.
+
+@end table
+
+@mansect see also
+@ifset isman
+@command{sha256sum}(1)
+@end ifset
+@manpause
+
+@c **********************************************************
 @c *****************  Architecure Overview  *****************
 @c **********************************************************
 @node Architecture
@@ -4502,7 +4047,7 @@ either a POSIX platform or compatible to the API used by Windows NT.
 Provisions have been take so that the library can be directly used from
 C++ applications; however building with a C++ compiler is not supported.
 
-Building libgcrypt is done by using the common @code{./configure && make}
+Building Libgcrypt is done by using the common @code{./configure && make}
 approach.  The configure command is included in the source distribution
 and as a portable shell script it works on any Unix-alike system.  The
 result of running the configure script are a C header file
@@ -4531,20 +4076,20 @@ details.}.
 
 Libgcrypt consists of several subsystems (@pxref{fig:subsystems}) and
 all these subsystems provide a public API; this includes the helper
-subsystems like the one for S-expression.  The API style depends on the
-subsystem; in general an open, use, close approach is implemented.  The
-open returns a handle to a context used for all futher operations on
+subsystems like the one for S-expressions.  The API style depends on the
+subsystem; in general an open-use-close approach is implemented.  The
+open returns a handle to a context used for all further operations on
 this handle, several functions may then be used on this handle and a
 final close function releases all resources associated with the handle.
 
 @menu
-* Public-Key Subsystem Architecture::              All about public keys.
-* Symmetric Encryption Subsystem Architecture::    All about standard ciphers.
-* Hashing and MACing Subsystem Architecture::      All about hashing.
-* Multi-Precision-Integer Subsystem Architecture:: All about big integers.
-* Prime-Number-Generator Subsystem Architecture::  All about prime numbers.
-* Random-Number Subsystem Architecture::           All about random stuff.
-* Helper Subsystems Architecture::                 All about other stuff.
+* Public-Key Subsystem Architecture::              About public keys.
+* Symmetric Encryption Subsystem Architecture::    About standard ciphers.
+* Hashing and MACing Subsystem Architecture::      About hashing.
+* Multi-Precision-Integer Subsystem Architecture:: About big integers.
+* Prime-Number-Generator Subsystem Architecture::  About prime numbers.
+* Random-Number Subsystem Architecture::           About random stuff.
+@c * Helper Subsystems Architecture::                 About other stuff.
 @end menu
 
 
@@ -4552,76 +4097,788 @@ final close function releases all resources associated with the handle.
 @node Public-Key Subsystem Architecture
 @section Public-Key Architecture
 
-TBD.
+Because public key cryptography is almost always used to process small
+amounts of data (hash values or session keys), the interface is not
+implemented using the open-use-close paradigm, but with single
+self-contained functions.  Due to the wide variety of parameters
+required by different algorithms S-expressions, as flexible way to
+convey these parameters, are used.  There is a set of helper functions
+to work with these S-expressions.
+@c see @xref{S-expression Subsystem Architecture}.
+
+Aside of functions to register new algorithms, map algorithms names to
+algorithms identifiers and to lookup properties of a key, the
+following main functions are available:
+
+@table @code
+
+@item gcry_pk_encrypt
+Encrypt data using a public key.
+
+@item gcry_pk_decrypt
+Decrypt data using a private key.
+
+@item gcry_pk_sign
+Sign data using a private key.
+
+@item gcry_pk_verify
+Verify that a signature matches the data.
+
+@item gcry_pk_testkey
+Perform a consistency over a public or private key.
+
+@item gcry_pk_genkey
+Create a new public/private key pair.
+
+@end table
+
+All these functions
+lookup the module implementing the algorithm and pass the actual work
+to that module.  The parsing of the S-expression input and the
+construction of S-expression for the return values is done by the high
+level code (@file{cipher/pubkey.c}).  Thus the internal interface
+between the algorithm modules and the high level functions passes data
+in a custom format.
+
+By default Libgcrypt uses a blinding technique for RSA decryption to
+mitigate real world timing attacks over a network: Instead of using
+the RSA decryption directly, a blinded value @math{y = x r^{e} \bmod n}
+is decrypted and the unblinded value @math{x' = y' r^{-1} \bmod n}
+returned.  The blinding value @math{r} is a random value with the size
+of the modulus @math{n} and generated with @code{GCRY_WEAK_RANDOM}
+random level.
+
+@cindex X9.31
+@cindex FIPS 186
+The algorithm used for RSA and DSA key generation depends on whether
+Libgcrypt is operated in standard or in FIPS mode.  In standard mode
+an algorithm based on the Lim-Lee prime number generator is used.  In
+FIPS mode RSA keys are generated as specified in ANSI X9.31 (1998) and
+DSA keys as specified in FIPS 186-2.
+
+
 
 @node Symmetric Encryption Subsystem Architecture
-@section Symmetric Encryption Subsystem Architecturen
+@section Symmetric Encryption Subsystem Architecture
+
+The interface to work with symmetric encryption algorithms is made up
+of functions from the @code{gcry_cipher_} name space.  The
+implementation follows the open-use-close paradigm and uses registered
+algorithm modules for the actual work.  Unless a module implements
+optimized cipher mode implementations, the high level code
+(@file{cipher/cipher.c}) implements the modes and calls the core
+algorithm functions to process each block.
+
+The most important functions are:
+
+@table @code
+
+@item gcry_cipher_open
+Create a new instance to encrypt or decrypt using a specified
+algorithm and mode.
+
+@item gcry_cipher_close
+Release an instance.
+
+@item gcry_cipher_setkey
+Set a key to be used for encryption or decryption.
+
+@item gcry_cipher_setiv
+Set an initialization vector to be used for encryption or decryption.
+
+@item gcry_cipher_encrypt
+@itemx gcry_cipher_decrypt
+Encrypt or decrypt data.  These functions may be called with arbitrary
+amounts of data and as often as needed to encrypt or decrypt all data.
+
+@end table
+
+There are also functions to query properties of algorithms or context,
+like block length, key length, map names or to enable features like
+padding methods.
+
 
-TBD.
 
 @node Hashing and MACing Subsystem Architecture
 @section Hashing and MACing Subsystem Architecture
 
-TBD.
+The interface to work with message digests and CRC algorithms is made
+up of functions from the @code{gcry_md_} name space.  The
+implementation follows the open-use-close paradigm and uses registered
+algorithm modules for the actual work.  Although CRC algorithms are
+not considered cryptographic hash algorithms, they share enough
+properties so that it makes sense to handle them in the same way.
+It is possible to use several algorithms at once with one context and
+thus compute them all on the same data.
+
+The most important functions are:
+
+@table @code
+@item gcry_md_open
+Create a new message digest instance and optionally enable one
+algorithm.  A flag may be used to turn the message digest algorithm
+into a HMAC algorithm.
+
+@item gcry_md_enable
+Enable an additional algorithm for the instance.
+
+@item gcry_md_setkey
+Set the key for the MAC.
+
+@item gcry_md_write
+Pass more data for computing the message digest to an instance.
+
+@item gcry_md_putc
+Buffered version of @code{gcry_md_write} implemented as a macro.
+
+@item gcry_md_read
+Finalize the computation of the message digest or HMAC and return the
+result.
+
+@item gcry_md_close
+Release an instance
+
+@item gcry_md_hash_buffer
+Convenience function to directly compute a message digest over a
+memory buffer without the need to create an instance first.
+
+@end table
+
+There are also functions to query properties of algorithms or the
+instance, like enabled algorithms, digest length, map algorithm names.
+it is also possible to reset an instance or to copy the current state
+of an instance at any time.  Debug functions to write the hashed data
+to files are available as well.
+
 
 
 @node Multi-Precision-Integer Subsystem Architecture
 @section Multi-Precision-Integer Subsystem Architecture
 
-TBD.
+The implementation of Libgcrypt's big integer computation code is
+based on an old release of GNU Multi-Precision Library (GMP).  The
+decision not to use the GMP library directly was due to stalled
+development at that time and due to security requirements which could
+not be provided by the code in GMP.  As GMP does, Libgcrypt provides
+high performance assembler implementations of low level code for
+several CPUS to gain much better performance than with a generic C
+implementation.
+
+@noindent
+Major features of Libgcrypt's multi-precision-integer code compared to
+GMP are:
+
+@itemize
+@item
+Avoidance of stack based allocations to allow protection against
+swapping out of sensitive data and for easy zeroing of sensitive
+intermediate results.
+
+@item
+Optional use of secure memory and tracking of its use so that results
+are also put into secure memory.
+
+@item
+MPIs are identified by a handle (implemented as a pointer) to give
+better control over allocations and to augment them with extra
+properties like opaque data.
+
+@item
+Removal of unnecessary code to reduce complexity.
+
+@item
+Functions specialized for public key cryptography.
+
+@end itemize
+
+
 
 @node Prime-Number-Generator Subsystem Architecture
 @section Prime-Number-Generator Subsystem Architecture
 
-TBD.
+Libgcrypt provides an interface to its prime number generator.  These
+functions make use of the internal prime number generator which is
+required for the generation for public key key pairs.  The plain prime
+checking function is exported as well.
+
+The generation of random prime numbers is based on the Lim and Lee
+algorithm to create practically save primes.@footnote{Chae Hoon Lim
+and Pil Joong Lee. A key recovery attack on discrete log-based shemes
+using a prime order subgroup. In Burton S. Kaliski Jr., editor,
+Advances in Cryptology: Crypto '97, pages 249­-263, Berlin /
+Heidelberg / New York, 1997. Springer-Verlag.  Described on page 260.}
+This algorithm creates a pool of smaller primes, select a few of them
+to create candidate primes of the form @math{2 * p_0 * p_1 * ... * p_n
++ 1}, tests the candidate for primality and permutates the pool until
+a prime has been found.  It is possible to clamp one of the small
+primes to a certain size to help DSA style algorithms.  Because most
+of the small primes in the pool are not used for the resulting prime
+number, they are saved for later use (see @code{save_pool_prime} and
+@code{get_pool_prime} in @file{cipher/primegen.c}).  The prime
+generator optionally supports the finding of an appropriate generator.
+
+@noindent
+The primality test works in three steps:
+
+@enumerate
+@item
+The standard sieve algorithm using the primes up to 4999 is used as a
+quick first check.
+
+@item
+A Fermat test filters out almost all non-primes.
+
+@item
+A 5 round Rabin-Miller test is finally used.  The first round uses a
+witness of 2, whereas the next rounds use a random witness.
+
+@end enumerate
+
+To support the generation of RSA and DSA keys in FIPS mode according
+to X9.31 and FIPS 186-2, Libgcrypt implements two additional prime
+generation functions: @code{_gcry_derive_x931_prime} and
+@code{_gcry_generate_fips186_2_prime}.  These functions are internal
+and not available through the public API.
+
+
 
 @node Random-Number Subsystem Architecture
 @section Random-Number Subsystem Architecture
 
-TBD.
+Libgcrypt provides 3 levels or random quality: The level
+@code{GCRY_VERY_STRONG_RANDOM} usually used for key generation, the
+level @code{GCRY_STRONG_RANDOM} for all other strong random
+requirements and the function @code{gcry_create_nonce} which is used
+for weaker usages like nonces.  There is also a level
+@code{GCRY_WEAK_RANDOM} which in general maps to
+@code{GCRY_STRONG_RANDOM} except when used with the function
+@code{gcry_mpi_randomize}, where it randomizes an
+multi-precision-integer using the @code{gcry_create_nonce} function.
+
+@noindent
+There are two distinct random generators available:
+
+@itemize
+@item
+The Continuously Seeded Pseudo Random Number Generator (CSPRNG), which
+is based on the classic GnuPG derived big pool implementation.
+Implemented in @code{random/random-csprng.c} and used by default.
+@item
+A FIPS approved ANSI X9.31 PRNG using AES with a 128 bit key. Implemented in
+@code{random/random-fips.c} and used if Libgcrypt is in FIPS mode.
+@end itemize
 
+@noindent
+Both generators make use of so-called entropy gathering modules:
+
+@table @asis
+@item rndlinux
+Uses the operating system provided
+@file{/dev/random} and @file{/dev/urandom} devices.
+
+@item rndunix
+Runs several operating system commands to collect entropy from sources
+like virtual machine and process statistics.  It is a kind of
+poor-man's @code{/dev/random} implementation. It is not available in
+FIPS mode.
+
+@item rndegd
+Uses the operating system provided Entropy Gathering Daemon (EGD).
+The EGD basically uses the same algorithms as rndunix does.  However
+as a system daemon it keeps on running and thus can serve several
+processes requiring entropy input and does not waste collected entropy
+if the application does not need all the collected entropy. It is not
+available in FIPS mode.
+
+@item rndw32
+Targeted for the Microsoft Windows OS.  It uses certain properties of
+that system and is the only gathering module available for that OS.
+
+@item rndhw
+Extra module to collect additional entropy by utilizing a hardware
+random number generator.  As of now the only supported hardware RNG is
+the Padlock engine of VIA (Centaur) CPUs.  It is not available in FIPS
+mode.
 
-@node Helper Subsystems Architecture
-@section Helper Subsystems Architecture
+@end table
 
-There are a few smaller subsystems which are mainly used internally by
-Libgcrypt but also available to applications.
 
 @menu
-* S-expression Subsystem Architecture::   Details about the S-expression architecture.
-* Memory Subsystem Architecture::         Details about the memory allocation architecture.
-* Miscellaneous Subsystems Architecture:: Details about other subsystems.
+* CSPRNG Description::      Description of the CSPRNG.
+* FIPS PRNG Description::   Description of the FIPS X9.31 PRNG.
 @end menu
 
-@node S-expression Subsystem Architecture
-@subsection S-expression Subsystem Architecture
 
-TBD.
+@node CSPRNG Description
+@subsection Description of the CSPRNG
+
+This random number generator is loosely modelled after the one
+described in Peter Gutmann's paper: "Software Generation of
+Practically Strong Random Numbers".@footnote{Also described in chapter
+6 of his book "Cryptographic Security Architecture", New York, 2004,
+ISBN 0-387-95387-6.}
+
+A pool of 600 bytes is used and mixed using the core RIPE-MD160 hash
+transform function.  Several extra features are used to make the
+robust against a wide variety of attacks and to protect against
+failures of subsystems.  The state of the generator may be saved to a
+file and initially seed form a file.
+
+Depending on how Libgcrypt was build the generator is able to select
+the best working entropy gathering module.  It makes use of the slow
+and fast collection methods and requires the pool to initially seeded
+form the slow gatherer or a seed file.  An entropy estimation is used
+to mix in enough data from the gather modules before returning the
+actual random output.  Process fork detection and protection is
+implemented.
+
+@c FIXME:  The design and implementaion needs a more verbose description.
+
+The implementation of the nonce generator (for
+@code{gcry_create_nonce}) is a straightforward repeated hash design: A
+28 byte buffer is initially seeded with the PID and the time in
+seconds in the first 20 bytes and with 8 bytes of random taken from
+the @code{GCRY_STRONG_RANDOM} generator.  Random numbers are then
+created by hashing all the 28 bytes with SHA-1 and saving that again
+in the first 20 bytes.  The hash is also returned as result.
+
+
+@node FIPS PRNG Description
+@subsection Description of the FIPS X9.31 PRNG
+
+The core of this deterministic random number generator is implemented
+according to the document ``NIST-Recommended Random Number Generator
+Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES
+Algorithms'', dated 2005-01-31.  This implementation uses the AES
+variant.
+
+The generator is based on contexts to utilize the same core functions
+for all random levels as required by the high-level interface.  All
+random generators return their data in 128 bit blocks.  If the caller
+requests less bits, the extra bits are not used.  The key for each
+generator is only set once at the first time a generator context is
+used.  The seed value is set along with the key and again after 1000
+output blocks.
+
+On Unix like systems the @code{GCRY_VERY_STRONG_RANDOM} and
+@code{GCRY_STRONG_RANDOM} generators are keyed and seeded using the
+rndlinux module with the @file{/dev/radnom} device. Thus these
+generators may block until the OS kernel has collected enough entropy.
+When used with Microsoft Windows the rndw32 module is used instead.
+
+The generator used for @code{gcry_create_nonce} is keyed and seeded
+from the @code{GCRY_STRONG_RANDOM} generator.  Thus is may also block
+if the @code{GCRY_STRONG_RANDOM} generator has not yet been used
+before and thus gets initialized on the first use by
+@code{gcry_create_nonce}.  This special treatment is justified by the
+weaker requirements for a nonce generator and to save precious kernel
+entropy for use by the ``real'' random generators.
+
+A self-test facility uses a separate context to check the
+functionality of the core X9.31 functions using a known answers test.
+During runtime each output block is compared to the previous one to
+detect a stucked generator.
+
+The DT value for the generator is made up of the current time down to
+microseconds (if available) and a free running 64 bit counter.  When
+used with the test context the DT value is taken from the context and
+incremented on each use.
+
+@c @node Helper Subsystems Architecture
+@c @section Helper Subsystems Architecture
+@c
+@c There are a few smaller subsystems which are mainly used internally by
+@c Libgcrypt but also available to applications.
+@c
+@c @menu
+@c * S-expression Subsystem Architecture::   Details about the S-expression architecture.
+@c * Memory Subsystem Architecture::         Details about the memory allocation architecture.
+@c * Miscellaneous Subsystems Architecture:: Details about other subsystems.
+@c @end menu
+@c
+@c @node S-expression Subsystem Architecture
+@c @subsection S-expression Subsystem Architecture
+@c
+@c Libgcrypt provides an interface to S-expression to create and parse
+@c them.  To use an S-expression with Libgcrypt it needs first be
+@c converted into the internal representation used by Libgcrypt (the type
+@c @code{gcry_sexp_t}).  The conversion functions support a large subset
+@c of the S-expression specification and further fature a printf like
+@c function to convert a list of big integers or other binary data into
+@c an S-expression.
+@c
+@c Libgcrypt currently implements S-expressions using a tagged linked
+@c list.  However this is not exposed to an application and may be
+@c changed in future releases to reduce overhead when already working
+@c with canonically encoded S-expressions.  Secure memory is supported by
+@c this S-expressions implementation.
+@c
+@c @node Memory Subsystem Architecture
+@c @subsection Memory Subsystem Architecture
+@c
+@c TBD.
+@c
+@c
+@c @node Miscellaneous Subsystems Architecture
+@c @subsection Miscellaneous Subsystems Architecture
+@c
+@c TBD.
+@c
+@c
+
+
 
+@c **********************************************************
+@c *******************  Appendices  *************************
+@c **********************************************************
 
-@node Memory Subsystem Architecture 
-@subsection Memory Subsystem Architecture 
+@c ********************************************
+@node Self-Tests
+@appendix Description of the Self-Tests
 
-TBD.
+In addition to the build time regression test suite, Libgcrypt
+implements self-tests to be performed at runtime.  Which self-tests
+are actually used depends on the mode Libgcrypt is used in.  In
+standard mode a limited set of self-tests is run at the time an
+algorithm is first used.  Note that not all algorithms feature a
+self-test in standard mode.  The @code{GCRYCTL_SELFTEST} control
+command may be used to run all implemented self-tests at any time;
+this will even run more tests than those run in FIPS mode.
 
+If any of the self-tests fails, the library immediately returns an
+error code to the caller.  If Libgcrypt is in FIPS mode the self-tests
+will be performed within the ``Self-Test'' state and any failure puts
+the library into the ``Error'' state.
 
-@node Miscellaneous Subsystems Architecture
-@subsection Miscellaneous Subsystems Architecture
+@c --------------------------------
+@section Power-Up Tests
 
-TBD.
+Power-up tests are only performed if Libgcrypt is in FIPS mode.
 
+@subsection Symmetric Cipher Algorithm Power-Up Tests
 
+The following symmetric encryption algorithm tests are run during
+power-up:
 
+@table @asis
+@item 3DES
+To test the 3DES 3-key EDE encryption in ECB mode these tests are
+run:
+@enumerate
+@item
+A known answer test is run on a 64 bit test vector processed by 64
+rounds of Single-DES block encryption and decryption using a key
+changed with each round.
+@item
+A known answer test is run on a 64 bit test vector processed by 16
+rounds of 2-key and 3-key Triple-DES block encryption and decryptions
+using a key changed with each round.
+@item
+10 known answer tests using 3-key Triple-DES EDE encryption, comparing
+the ciphertext to the known value, then running a decryption and
+comparing it to the initial plaintext.
+@end enumerate
+(@code{cipher/des.c:selftest})
+
+@item AES-128
+A known answer tests is run using one test vector and one test
+key with AES in ECB mode. (@code{cipher/rijndael.c:selftest_basic_128})
+
+@item AES-192
+A known answer tests is run using one test vector and one test
+key with AES in ECB mode. (@code{cipher/rijndael.c:selftest_basic_192})
+
+@item AES-256
+A known answer tests is run using one test vector and one test key
+with AES in ECB mode. (@code{cipher/rijndael.c:selftest_basic_256})
+@end table
 
+@subsection Hash Algorithm Power-Up Tests
+
+The following hash algorithm tests are run during power-up:
+
+@table @asis
+@item SHA-1
+A known answer test using the string @code{"abc"} is run.
+(@code{cipher/@/sha1.c:@/selftests_sha1})
+@item SHA-224
+A known answer test using the string @code{"abc"} is run.
+(@code{cipher/@/sha256.c:@/selftests_sha224})
+@item SHA-256
+A known answer test using the string @code{"abc"} is run.
+(@code{cipher/@/sha256.c:@/selftests_sha256})
+@item SHA-384
+A known answer test using the string @code{"abc"} is run.
+(@code{cipher/@/sha512.c:@/selftests_sha384})
+@item SHA-512
+A known answer test using the string @code{"abc"} is run.
+(@code{cipher/@/sha512.c:@/selftests_sha512})
+@end table
+
+@subsection MAC Algorithm Power-Up Tests
+
+The following MAC algorithm tests are run during power-up:
+
+@table @asis
+@item HMAC SHA-1
+A known answer test using 9 byte of data and a 64 byte key is run.
+(@code{cipher/hmac-tests.c:selftests_sha1})
+@item HMAC SHA-224
+A known answer test using 28 byte of data and a 4 byte key is run.
+(@code{cipher/hmac-tests.c:selftests_sha224})
+@item HMAC SHA-256
+A known answer test using 28 byte of data and a 4 byte key is run.
+(@code{cipher/hmac-tests.c:selftests_sha256})
+@item HMAC SHA-384
+A known answer test using 28 byte of data and a 4 byte key is run.
+(@code{cipher/hmac-tests.c:selftests_sha384})
+@item HMAC SHA-512
+A known answer test using 28 byte of data and a 4 byte key is run.
+(@code{cipher/hmac-tests.c:selftests_sha512})
+@end table
+
+@subsection Random Number Power-Up Test
+
+The DRNG is tested during power-up this way:
+
+@enumerate
+@item
+Requesting one block of random using the public interface to check
+general working and the duplicated block detection.
+@item
+3 know answer tests using pre-defined keys, seed and initial DT
+values.  For each test 3 blocks of 16 bytes are requested and compared
+to the expected result.  The DT value is incremented for each block.
+@end enumerate
+
+@subsection Public Key Algorithm Power-Up Tests
+
+The public key algorithms are tested during power-up:
+
+@table @asis
+@item RSA
+A pre-defined 1024 bit RSA key is used and these tests are run
+in turn:
+@enumerate
+@item
+Conversion of S-expression to internal format.
+(@code{cipher/@/rsa.c:@/selftests_rsa})
+@item
+Private key consistency check.
+(@code{cipher/@/rsa.c:@/selftests_rsa})
+@item
+A pre-defined 20 byte value is signed with PKCS#1 padding for SHA-1.
+The result is verified using the public key against the original data
+and against modified data.  (@code{cipher/@/rsa.c:@/selftest_sign_1024})
+@item
+A 1000 bit random value is encrypted and checked that it does not
+match the orginal random value.  The encrtypted result is then
+decrypted and checked that it macthes the original random value.
+(@code{cipher/@/rsa.c:@/selftest_encr_1024})
+@end enumerate
+
+@item DSA
+A pre-defined 1024 bit DSA key is used and these tests are run in turn:
+@enumerate
+@item
+Conversion of S-expression to internal format.
+(@code{cipher/@/dsa.c:@/selftests_dsa})
+@item
+Private key consistency check.
+(@code{cipher/@/dsa.c:@/selftests_dsa})
+@item
+A pre-defined 20 byte value is signed with PKCS#1 padding for
+SHA-1.  The result is verified using the public key against the
+original data and against modified data.
+(@code{cipher/@/dsa.c:@/selftest_sign_1024})
+@end enumerate
+@end table
+
+@subsection Integrity Power-Up Tests
+
+The integrity of the Libgcrypt is tested during power-up but only if
+checking has been enabled at build time.  The check works by computing
+a HMAC SHA-256 checksum over the file used to load Libgcrypt into
+memory.  That checksum is compared against a checksum stored in a file
+of the same name but with a single dot as a prefix and a suffix of
+@file{.hmac}.
+
+
+@subsection Critical Functions Power-Up Tests
+
+The 3DES weak key detection is tested during power-up by calling the
+detection function with keys taken from a table listening all weak
+keys.  The table itself is protected using a SHA-1 hash.
+(@code{cipher/@/des.c:@/selftest})
+
+
+
+@c --------------------------------
+@section Conditional Tests
+
+The conditional tests are performed if a certain contidion is met.
+This may occur at any time; the library does not necessary enter the
+``Self-Test'' state to run these tests but will transit to the
+``Error'' state if a test failed.
+
+@subsection Key-Pair Generation Tests
+
+After an asymmetric key-pair has been generated, Libgcrypt runs a
+pair-wise consistency tests on the generated key.  On failure the
+generated key is not used, an error code is returned and, if in FIPS
+mode, the library is put into the ``Error'' state.
+
+@table @asis
+@item RSA
+The test uses a random number 64 bits less the size of the modulus as
+plaintext and runs an encryption and decryption operation in turn.  The
+encrypted value is checked to not match the plaintext and the result
+of the decryption is checked to match the plaintext.
+
+A new random number of the same size is generated, signed and verified
+to test the correctness of the signing operation.  As a second signing
+test, the signature is modified by incrementing its value and then
+verified with the expected result that the verification fails.
+(@code{cipher/@/rsa.c:@/test_keys})
+@item DSA
+The test uses a random number of the size of the Q parameter to create
+a signature and then checks that the signature verifies.  As a second
+signing test, the data is modified by incrementing its value and then
+verified against the signature with the expected result that the
+verification fails.  (@code{cipher/@/dsa.c:@/test_keys})
+@end table
+
+
+@subsection Software Load Tests
+
+No code is loaded at runtime.
+
+@subsection Manual Key Entry Tests
+
+A manual key entry feature is not implemented in Libgcrypt.
+
+
+@subsection Continuous RNG Tests
+
+The continuous random number test is only used in FIPS mode.  The RNG
+generates blocks of 128 bit size; the first block generated per
+context is saved in the context and another block is generated to be
+returned to the caller.  Each block is compared against the saved
+block and then stored in the context.  If a duplicated block is
+detected an error is signaled and the library is put into the
+``Fatal-Error'' state.
+(@code{random/@/random-fips.c:@/x931_aes_driver})
+
+
+
+@c --------------------------------
+@section Application Requested Tests
+
+The application may requests tests at any time by means of the
+@code{GCRYCTL_SELFTEST} control command.  Note that using these tests
+is not FIPS conform: Although Libgcrypt rejects all application
+requests for services while running self-tests, it does not ensure
+that no other operations of Libgcrypt are still being executed.  Thus,
+in FIPS mode an application requesting self-tests needs to power-cycle
+Libgcrypt instead.
+
+When self-tests are requested, Libgcrypt runs all the tests it does
+during power-up as well as a few extra checks as described below.
+
+@subsection Symmetric Cipher Algorithm Tests
+
+The following symmetric encryption algorithm tests are run in addition
+to the power-up tests:
+
+@table @asis
+@item AES-128
+A known answer tests with test vectors taken from NIST SP800-38a and
+using the high level functions is run for block modes CFB and OFB.
+
+@end table
+
+@subsection Hash Algorithm Tests
+
+The following hash algorithm tests are run in addition to the
+power-up tests:
+
+@table @asis
+@item SHA-1
+@itemx SHA-224
+@itemx SHA-256
+@enumerate
+@item
+A known answer test using a 56 byte string is run.
+@item
+A known answer test using a string of one million letters "a" is run.
+@end enumerate
+(@code{cipher/@/sha1.c:@/selftests_sha1},
+@code{cipher/@/sha256.c:@/selftests_sha224},
+@code{cipher/@/sha256.c:@/selftests_sha256})
+@item SHA-384
+@item SHA-512
+@enumerate
+@item
+A known answer test using a 112 byte string is run.
+@item
+A known answer test using a string of one million letters "a" is run.
+@end enumerate
+(@code{cipher/@/sha512.c:@/selftests_sha384},
+@code{cipher/@/sha512.c:@/selftests_sha512})
+@end table
+
+@subsection MAC Algorithm Tests
+
+The following MAC algorithm tests are run in addition to the power-up
+tests:
+
+@table @asis
+@item HMAC SHA-1
+@enumerate
+@item
+A known answer test using 9 byte of data and a 20 byte key is run.
+@item
+A known answer test using 9 byte of data and a 100 byte key is run.
+@item
+A known answer test using 9 byte of data and a 49 byte key is run.
+@end enumerate
+(@code{cipher/hmac-tests.c:selftests_sha1})
+@item HMAC SHA-224
+@itemx HMAC SHA-256
+@itemx HMAC SHA-384
+@itemx HMAC SHA-512
+@enumerate
+@item
+A known answer test using 9 byte of data and a 20 byte key is run.
+@item
+A known answer test using 50 byte of data and a 20 byte key is run.
+@item
+A known answer test using 50 byte of data and a 26 byte key is run.
+@item
+A known answer test using 54 byte of data and a 131 byte key is run.
+@item
+A known answer test using 152 byte of data and a 131 byte key is run.
+@end enumerate
+(@code{cipher/@/hmac-tests.c:@/selftests_sha224},
+@code{cipher/@/hmac-tests.c:@/selftests_sha256},
+@code{cipher/@/hmac-tests.c:@/selftests_sha384},
+@code{cipher/@/hmac-tests.c:@/selftests_sha512})
+@end table
 
-@c **********************************************************
-@c *******************  Appendices  *************************
-@c **********************************************************
 
 @c ********************************************
-@node FIPS Restrictions
-@appendix Restrictions in FIPS mode
+@node FIPS Mode
+@appendix Description of the FIPS Mode
+
+This appendix gives detailed information pertaining to the FIPS mode.
+In particular, the changes to the standard mode and the finite state
+machine are described.  The self-tests required in this mode are
+described in the appendix on self-tests.
 
+@c -------------------------------
+@section Restrictions in FIPS Mode
+
+@noindent
 If Libgcrypt is used in FIPS mode these restrictions are effective:
 
 @itemize
@@ -4658,7 +4915,7 @@ HMAC using a SHA-384 message digest.
 @item GCRY_MD_SHA512,GCRY_MD_FLAG_HMAC
 HMAC using a SHA-512 message digest.
 @item GCRY_PK_RSA
-RSA encryption and signing.         
+RSA encryption and signing.
 @item GCRY_PK_DSA
 DSA signing.
 @end table
@@ -4667,58 +4924,70 @@ Note that the CRC algorithms are not considered cryptographic algorithms
 and thus are in addition available.
 
 @item
-RSA and DSA key generation refuses to create a key with a keysize of
-less than 1024 bits.  
+RSA key generation refuses to create a key with a keysize of
+less than 1024 bits.
+
+@item
+DSA key generation refuses to create a key with a keysize other
+than 1024 bits.
 
 @item
-The @code{transient-key} flag for RSA key generation is ignored.
+The @code{transient-key} flag for RSA and DSA key generation is ignored.
 
 @item
 Support for the VIA Padlock engine is disabled.
 
-@item 
+@item
 FIPS mode may only be used on systems with a /dev/random device.
 Switching into FIPS mode on other systems will fail at runtime.
 
 @item
-Saving and loading a random seed file is not ignored.
+Saving and loading a random seed file is ignored.
 
 @item
 An X9.31 style random number generator is used in place of the
 large-pool-CSPRNG generator.
 
 @item
-The Alternative Public Key Interface (@code{gcry_ac_xxx}) is not
-supported and all API calls return an error.
-
-@item Registration of external modules is not supported.
+The command @code{GCRYCTL_ENABLE_QUICK_RANDOM} is ignored.
 
-@item 
+@item
 Message digest debugging is disabled.
 
 @item
 All debug output related to cryptographic data is suppressed.
 
-@item 
-On-the-fly self-tests are not performed, instead of this self-tests are
-run before entering operational state.
+@item
+On-the-fly self-tests are not performed, instead self-tests are run
+before entering operational state.
+
+@item
+The function @code{gcry_set_allocation_handler} may not be used.  If
+it is used Libgcrypt disables FIPS mode unless Enforced FIPS mode is
+enabled, in which case Libgcrypt will enter the error state.
+
+@item
+The digest algorithm MD5 may not be used.  If it is used Libgcrypt
+disables FIPS mode unless Enforced FIPS mode is enabled, in which case
+Libgcrypt will enter the error state.
 
 @item
-The function @code{gcry_set_allocation_handler} may not be used.  If it
-is used Libgcrypt will enter the error state.
+In Enforced FIPS mode the command @code{GCRYCTL_DISABLE_SECMEM} is
+ignored.  In standard FIPS mode it disables FIPS mode.
 
 @item
 A handler set by @code{gcry_set_outofcore_handler} is ignored.
 @item
 A handler set by @code{gcry_set_fatalerror_handler} is ignored.
 
-
 @end itemize
 
+Note that when we speak about disabling FIPS mode, it merely means
+that the function @code{gcry_fips_mode_active} returns false; it does
+not mean that any non FIPS algorithms are allowed.
 
 @c ********************************************
-@node FIPS Finite State Machine
-@appendix FIPS Finite State Machine
+@section FIPS Finite State Machine
 
 The FIPS mode of libgcrypt implements a finite state machine (FSM) using
 8 states (@pxref{tbl:fips-states}) and checks at runtime that only valid
@@ -4735,7 +5004,7 @@ transitions (@pxref{tbl:fips-state-transitions}) may happen.
 States used by the FIPS FSM:
 @table @asis
 
-@item Power-Off 
+@item Power-Off
 Libgcrypt is not runtime linked to another application.  This usually
 means that the library is not loaded into main memory.  This state is
 documentation only.
@@ -4751,7 +5020,7 @@ The Libgcrypt initialization functions are performed and the library has
 not yet run any self-test.
 
 @item Self-Test
-Libgcrypt is performing self-tests.               
+Libgcrypt is performing self-tests.
 
 @item Operational
 Libgcrypt is in the operational state and all interfaces may be used.
@@ -4759,11 +5028,11 @@ Libgcrypt is in the operational state and all interfaces may be used.
 @item Error
 Libgrypt is in the error state.  When calling any FIPS relevant
 interfaces they either return an error (@code{GPG_ERR_NOT_OPERATIONAL})
-or put Libgcrypt into the Fatal-Error state and won't return.  
+or put Libgcrypt into the Fatal-Error state and won't return.
 
 @item Fatal-Error
-Libgcrypt is in a non-recoverable error state and 
-will automatically transit into the  Shutdown state.        
+Libgcrypt is in a non-recoverable error state and
+will automatically transit into the  Shutdown state.
 
 @item Shutdown
 Libgcrypt is about to be terminated and removed from the memory. The
@@ -4778,7 +5047,7 @@ application may at this point still runing cleanup handlers.
 @noindent
 The valid state transitions (@pxref{fig:fips-fsm}) are:
 @table @code
-@item 1 
+@item 1
 Power-Off to Power-On is implicitly done by the OS loading Libgcrypt as
 a shared library and having it linked to an application.
 
@@ -4790,9 +5059,9 @@ Libgcrypt intialization function @code{gcry_check_version}.
 Init to Self-Test is either triggred by a dedicated API call or implicit
 by invoking a libgrypt service conrolled by the FSM.
 
-@item 4 
+@item 4
 Self-Test to Operational is triggered after all self-tests passed
-successfully.  
+successfully.
 
 @item 5
 Operational to Shutdown is an artifical state without any direct action
@@ -4820,7 +5089,7 @@ Error to Fatal-Error is triggred if Libgrypt detects an fatal error
 while already being in Error state.
 
 @item 10
-Fatal-Error to Shutdown is automatically entered by Libgcrypt 
+Fatal-Error to Shutdown is automatically entered by Libgcrypt
 after having reported the error.
 
 @item 11
@@ -4839,7 +5108,7 @@ running self-tests.
 Self-Test to Error is triggred by a failed self-test.
 
 @item 15
-Operational to Fatal-Error is triggred if Libcrypt encountered a
+Operational to Fatal-Error is triggered if Libcrypt encountered a
 non-recoverable error.
 
 @item 16
@@ -4850,9 +5119,40 @@ the self-tests again.
 Error to Self-Test is triggered if the application has requested to run
 self-tests to get to get back into operational state after an error.
 
+@item 18
+Init to Error is triggered by errors in the initialization code.
+
+@item 19
+Init to Fatal-Error is triggered by non-recoverable errors in the
+initialization code.
+
+@item 20
+Error to Error is triggered by errors while already in the Error
+state.
+
+
 @end table
 @end float
 
+@c ********************************************
+@section FIPS Miscellaneous Information
+
+Libgcrypt does not do any key management on itself; the application
+needs to care about it.  Keys which are passed to Libgcrypt should be
+allocated in secure memory as available with the functions
+@code{gcry_malloc_secure} and @code{gcry_calloc_secure}.  By calling
+@code{gcry_free} on this memory, the memory and thus the keys are
+overwritten with zero bytes before releasing the memory.
+
+For use with the random number generator, Libgcrypt generates 3
+internal keys which are stored in the encryption contexts used by the
+RNG.  These keys are stored in secure memory for the lifetime of the
+process.  Application are required to use @code{GCRYCTL_TERM_SECMEM}
+before process termination.  This will zero out the entire secure
+memory and thus also the encryption contexts with these keys.
+
+
+
 @c **********************************************************
 @c *************  Appendices (license etc.)  ****************
 @c **********************************************************
@@ -4884,14 +5184,10 @@ self-tests to get to get back into operational state after an error.
 GCRYCTL_SET_RANDOM_DAEMON_SOCKET
 GCRYCTL_USE_RANDOM_DAEMON
 The random damon is still a bit experimental, thus we do not document
-them.  Not ethat they should be used during initialization and that
+them.  Notthat they should be used during initialization and that
 these functions are not really thread safe.
 
 
 
 
 @c  LocalWords:  int HD
-
-
-
-